Myogenin-dependent nAChR clustering in aneural myotubes.

Mol Cell Neurosci

Molecular and Behavioral Neurosciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.

Published: April 2006

AI Article Synopsis

  • During the development of the neuromuscular junction, agrin and laminin help cluster nicotinic acetylcholine receptors (nAChRs) through the activation of MuSK, a tyrosine kinase.
  • Myogenin is identified as a crucial muscle-specific transcription factor for not only myoblast differentiation but also for effective nAChR clustering.
  • The study reveals that myogenin expression is vital for robust nAChR clustering, and this function cannot be replaced by other muscle regulatory factors or by simply increasing levels of clustering molecules like MuSK, rapsyn, and nAChRs.

Article Abstract

During development of the neuromuscular junction, nerve-derived agrin and the cell substrate laminin stimulate postsynaptic nAChR clustering. This clustering is dependent on activation of the tyrosine kinase, MuSK, which signals receptor clustering via a rapsyn-dependent mechanism. Myogenin is a muscle-specific transcription factor that controls myoblast differentiation and nAChR gene expression. Here, we used RNA interference to investigate if myogenin is also necessary for nAChR clustering. We find that myogenin expression is essential for robust nAChR clustering and cannot be compensated by the muscle regulatory factors MyoD, myf5, and MRF4. In addition, we show that clustering cannot be rescued in myogenin-depleted myotubes by simply overexpressing the essential clustering molecules MuSK, rapsyn, and nAChRs. These data suggest that myogenin controls the expression of molecules crucial to nAChR clustering in addition to its role in regulating nAChR gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2005.12.005DOI Listing

Publication Analysis

Top Keywords

nachr clustering
20
clustering
9
nachr gene
8
gene expression
8
nachr
6
myogenin-dependent nachr
4
clustering aneural
4
aneural myotubes
4
myotubes development
4
development neuromuscular
4

Similar Publications

Novel Transgenic Zebrafish Lines to Study the CHRNA3-B4-A5 Gene Cluster.

Dev Neurobiol

January 2025

Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.

Acetylcholine (ACh), a vital neurotransmitter for both the peripheral (PNS) and central nervous systems (CNS), signals through nicotinic ACh receptors (nAChRs) and muscarinic ACh receptors (mAChR). Here, we explore the expression patterns of three nAChR subunits, chrna3, chrnb4, and chrna5, which are located in an evolutionary conserved cluster. This close genomic positioning, in a range of vertebrates, may indicate co-functionality and/or co-expression.

View Article and Find Full Text PDF

The muscle-specific microRNA miR-206 has recently emerged as a potential regulator of genes involved in the formation and regeneration of the neuromuscular junction (NMJ). This study investigated miR-206-3p (miR-206) expression in synaptic and non-synaptic regions of denervated mice and α-dystrobrevin (Dtna)-knockout mice, as well as its impact on the formation and/or maintenance of agrin-induced acetylcholine receptor (AChR) clusters. In denervated, Dtna-deficient and crushed muscles, miR-206 expression significantly increased compared to what was seen for innervated muscles.

View Article and Find Full Text PDF

The localization and clustering of neurotransmitter receptors at appropriate postsynaptic sites is a key step in the control of synaptic transmission. Here, we identify a novel paradigm for the synaptic localization of an ionotropic acetylcholine receptor (AChR) based on the direct interaction of its extracellular domain with a cell adhesion molecule of the IgLON family. Our results show that RIG-5 and ZIG-8, which encode the sole IgLONs in are tethered in the pre- and postsynaptic membranes, respectively, and interact through their first immunoglobulin-like (Ig) domains.

View Article and Find Full Text PDF

Age-related impairment of the diaphragm causes respiratory complications. Neuromuscular junction (NMJ) dysfunction can be one of the triggering events in diaphragm weaknesses in old age. Prominent structural and functional alterations in diaphragm NMJs were described in elderly rodents, but NMJ changes in middle age remain unclear.

View Article and Find Full Text PDF

Drug modulation of the α7 acetylcholine receptor has emerged as a therapeutic strategy for neurological, neurodegenerative, and inflammatory disorders. α7 is a homo-pentamer containing topographically distinct sites for agonists, calcium, and drug modulators with each type of site present in five copies. However, functional relationships between agonist, calcium, and drug modulator sites remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!