Ca2+-activated K+ (KCa) channels are involved in the relaxations elicited by sildenafil in penile resistance arteries.

Eur J Pharmacol

Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040-Madrid, Spain.

Published: February 2006

The aim of the present study was to evaluate the role of K+ channels in the vasorelaxant effect of the phosphodiesterase 5 inhibitor, sildenafil, in isolated horse penile resistance arteries mounted in microvascular myographs. In phenylephrine-precontracted arteries, sildenafil elicited potent relaxations which were markedly reduced by raising extracellular K+, by the non-selective blocker of Ca2+-activated K+ channels (KCa), tetraethylammonium and by the blocker of large- and intermediate-conductance KCa channels, charybdotoxin. Sildenafil relaxant responses were also reduced by the selective inhibitor of large conductance KCa (BK(Ca)) channels iberiotoxin, but not by the blocker of small conductance KCa channels apamin. The inhibitor of the cGMP-dependent protein kinase (PKG), Rp-8-Br-PET-cGMPS, reduced the relaxations elicited by sildenafil but combined treatment with iberiotoxin and Rp-8-Br-PET-cGMPS did not further inhibit these relaxations, compared to the effect of either blocker alone. Iberiotoxin also shifted to the right the relaxations elicited by both the NO donor, S-nitrosoacetyl-D,L-penicillamine (SNAP) and the adenylate cyclase activator forskolin; treatment with both iberiotoxin and Rp-8-Br-PET-cGMPS did cause an additional inhibition. The present results demonstrate that the relaxant effect of sildenafil and NO in penile resistance arteries is due in part to activation of BK(Ca) channels through a PKG-dependent mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2005.12.033DOI Listing

Publication Analysis

Top Keywords

kca channels
12
relaxations elicited
12
penile resistance
12
resistance arteries
12
elicited sildenafil
8
sildenafil penile
8
conductance kca
8
bkca channels
8
treatment iberiotoxin
8
iberiotoxin rp-8-br-pet-cgmps
8

Similar Publications

Potassium Current Signature of Neuronal/Glial Progenitors in Amniotic Fluid Stem Cells.

Cells

January 2025

Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.

Article Synopsis
  • Amniotic fluid contains stem cells (AF-SCs) that have potential uses in regenerative medicine for treating various injuries and diseases.
  • When exposed to basic Fibroblast Growth Factor (bFGF), AF-SCs show the ability to survive and migrate in a rat brain model, resembling characteristics of neuronal/glial progenitor cells.
  • The study employs electrophysiological techniques to identify specific potassium currents in AF-SCs and confirms that histamine can influence calcium dynamics and potassium current activation in these cells.
View Article and Find Full Text PDF

Peptide Lv and Angiogenesis: A Newly Discovered Angiogenic Peptide.

Biomedicines

December 2024

Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.

Peptide Lv is a small endogenous secretory peptide with ~40 amino acids and is highly conserved among certain several species. While it was first discovered that it augments L-type voltage-gated calcium channels (LTCCs) in neurons, thus it was named peptide "Lv", it can bind to vascular endothelial growth factor receptor 2 (VEGFR2) and has VEGF-like activities, including eliciting vasodilation and promoting angiogenesis. Not only does peptide Lv augment LTCCs in neurons and cardiomyocytes, but it also promotes the expression of intermediate-conductance K channels (K3.

View Article and Find Full Text PDF

Peptide Toxins from Marine Snails with Activity on Potassium Channels and/or Currents.

Toxins (Basel)

November 2024

Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Mexico.

Toxins from snails are peptides characterized by a great structural and functional diversity. They have a high affinity for a wide range of membrane proteins such as ion channels, neurotransmitter transporters, and G protein-coupled receptors. Potassium ion channels are integral proteins of cell membranes that play vital roles in physiological processes in muscle and neuron cells, among others, and reports in the literature indicate that perturbation in their function (by mutations or ectopic expression) may result in the development and progression of different ailments in humans.

View Article and Find Full Text PDF

Potassium channels mediate nitric oxide-induced vasorelaxation in arteries supplying colon cancer.

Prostaglandins Other Lipid Mediat

December 2024

Department of Biology, College of Science, University of Zakho, Duhok, Kurdistan Region, Iraq; Department of Biology, College of Science, University of Nawroz, Duhok, Kurdistan Region, Iraq.

Introduction: Aberrant vascular function and cancer growth are closely related, with nitric oxide (NO) being a key factor in vascular tone regulation. This study provides Novel insights into the distinctive mechanisms underlying cancer-associated vascular dysfunction by investigating the involvement of potassium (K) channels in NO-mediated vasorelaxation within arteries supplying colon cancer.

Methods: Arterial segments from colon cancer patients were isolated and sectioned into rings, these rings were mounted in an organ bath filled with Krebs' solution and maintained at 37°C.

View Article and Find Full Text PDF

Neurons differentiate mechanical stimuli force and rate to elicit unique functional responses, driving the need for further tools to generate various mechanical stimuli. Here, cell-internal nanomagnetic forces (iNMF) are introduced by manipulating internalized magnetic nanoparticles with an external magnetic field across cortical neuron networks in vitro. Under iNMF, cortical neurons exhibit calcium (Ca) influx, leading to modulation of activity observed through Ca event rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!