Objective Of The Study: To determine the age distribution in HAV infection and seasonal variations in the prevalence of acute viral hepatitis caused by hepatitis A virus.
Study Design: A descriptive study.
Place And Duration: The study was carried out on the patients reporting at Virology Department, Armed Forces Institute of Pathology (AFIP), Rawalpindi, for determination of hepatitis A virus (HAV) IgM antibody, from July 2003 to June 2004.
Patients And Methods: Altogether 626 patients with clinical suspicion of hepatitis A virus infection were referred to AFIP Rawalpindi for this test. Blood samples were collected and sera were separated and transferred to plastic aliquots that were stored at -20 degrees C in a retrievable fashion until utilized in testing. The testing for ant-HAV IgM was carried out with the help of a commercial Enzyme Linked Immunosorbant Assay (ELISA) using reagent kits of DiasSorin (Germany) for HAV IgM antibodies.
Results: The HAV IgM positive rate was 40.57% (252/626). Those tested included the sporadic cases as well as the patients from outbreak in two schools of Nowshera cantonment. The age of patients testing positive for HAV IgM, ranged from 03 to 27 years. There was a statistically significant seasonal difference in rate of positivity in different months of the calendar year. An outbreak of HAV infection was seen in the children of two neighboring schools of a cantonment, in which 44 children in different classes developed clinical jaundice.
Conclusion: HAV infection occurs in a significant proportion of young people with a clinical suspicion of HAV infection. There is a changing trend of developing hepatitis A in the age beyond 18 years and in outbreaks, which was not there in our patients previously due to universal immunity found against HAV by the age of 18. It was because of chances of consumption of polluted food.
Download full-text PDF |
Source |
---|
Pathogens
December 2024
Department of Levante Ligure, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via degli Stagnoni 96, 19100 La Spezia, Italy.
Bivalve molluscs are filter-feeding organisms, capable of concentrating pathogenic microorganisms from the surrounding environment, thus contributing to the spread of viral pathogens, which they can transmit to humans, especially if eaten raw or undercooked. Although norovirus (NoV) and the hepatitis A virus (HAV) are considered the most common causes of foodborne infections, in recent years, other viruses with a zoonotic potential have been identified in shellfish, such as the hepatitis E virus (HEV), astrovirus (AsV), and aichi virus (AiV). The aim of the study was to investigate the presence of classical and emerging pathogenic enteric viruses in oysters () and mussels () from a mollusc farming area in the northwest of Italy, between April 2022 and March 2023.
View Article and Find Full Text PDFPoult Sci
January 2025
Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271017, China; Shandong Provincial Key Laboratory of Zoonoses, Shandong Taian 271017, China. Electronic address:
Duck viral hepatitis (DVH) is one of the most common diseases of waterfowl. Duck hepatitis A virus type 1 (DHAV-1) and type 3 (DHAV-3) have been on the rise seriously endangering the development of duck farming. In this study, we constructed a recombinant Lactococcus lactis (L.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Infectious Diseases, Molecular Virology, Section Virus-Host Interactions, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany.
NF-κB essential modulator (NEMO) is critically involved in the induction of interferons (IFNs) and pro-inflammatory cytokines. Hepatitis A virus (HAV) 3C protease was recently identified to cleave NEMO in non-hepatic cells. This study aimed at understanding efficiency and function of HAV 3C-mediated NEMO cleavage in hepatocytes.
View Article and Find Full Text PDFVet Sci
December 2024
Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea.
Duck hepatitis A virus type 3 (DHAV-3) is a viral pathogen that causes acute, high-mortality hepatitis in ducklings, and vaccination with attenuated live vaccines is currently the main preventive measure against it. However, differentiating infected from vaccinated animals (DIVA) is crucial for clinical diagnosis and effective disease control. This study aimed to develop a rapid mismatch amplification mutation assay PCR (MAMA-PCR) diagnostic method to simultaneously detect and differentiate between wild-type and vaccine strains.
View Article and Find Full Text PDFJ Vector Borne Dis
January 2025
State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal, Madhya Pradesh, India.
Background Objectives: Co-infection of dengue virus and acute hepatitis A virus in paediatric population is a major health concern in endemic countries. This cross sectional retrospective study was conducted to evaluate the prevalence of hepatitis A virus among the clinically dengue suspected paediatric cases presented at our tertiary care centre during the two-year period (2022-2023).
Methods: A total of 747 dengue suspected paediatric clinical specimens were included in this study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!