Adenosine 5'-polyphosphates have been identified in vitro, as products of certain enzymatic reactions, and in vivo. Although the biological role of these compounds is not known, there exist highly specific hydrolases that degrade nucleoside 5'-polyphosphates into the corresponding nucleoside 5'-triphosphates. One approach to understanding the mechanism and function of these enzymes is through the use of specifically designed phosphonate analogues. We synthesized novel nucleotides: alpha,beta-methylene-adenosine 5'-tetraphosphate (pppCH2pA), beta,gamma-methylene-adenosine 5'-tetraphosphate (ppCH2ppA), gamma,delta-methylene-adenosine 5'-tetraphosphate (pCH2pppA), alphabeta,gammadelta-bismethylene-adenosine 5'-tetraphosphate (pCH2ppCH2pA), alphabeta, betagamma-bismethylene-adenosine 5'-tetraphosphate (ppCH2pCH2pA) and betagamma, gammadelta-bis(dichloro)methylene-adenosine 5'-tetraphosphate (pCCl2pCCl2ppA), and tested them as potential substrates and/or inhibitors of three specific nucleoside tetraphosphatases. In addition, we employed these p4A analogues with two asymmetrically and one symmetrically acting dinucleoside tetraphosphatases. Of the six analogues, only pppCH2pA is a substrate of the two nucleoside tetraphosphatases (EC 3.6.1.14), from yellow lupin seeds and human placenta, and also of the yeast exopolyphosphatase (EC 3.6.1.11). Surprisingly, none of the six analogues inhibited these p4A-hydrolysing enzymes. By contrast, the analogues strongly inhibit the (asymmetrical) dinucleoside tetraphosphatases (EC 3.6.1.17) from human and the narrow-leafed lupin. ppCH2ppA and pCH2pppA, inhibited the human enzyme with Ki values of 1.6 and 2.3 nm, respectively, and the lupin enzyme with Ki values of 30 and 34 nm, respectively. They are thereby identified as being the strongest inhibitors ever reported for the (asymmetrical) dinucleoside tetraphosphatases. The three analogues having two halo/methylene bridges are much less potent inhibitors for these enzymes. These novel nucleotides should prove valuable tools for further studies on the cellular functions of mono- and dinucleoside polyphosphates and on the enzymes involved in their metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-4658.2006.05115.x | DOI Listing |
Anal Biochem
February 2025
School of Chemistry and Materials Science, Rochester Institute of Technology, United States. Electronic address:
When stressed, cells synthesize di-adenosine polyphosphates (ApA), and cellular organisms also express proteins that degrade these compounds to release ATP. Most of these proteins are members of the nudix hydrolase superfamily, and several are involved in bacterial pathogenesis, neurodevelopment, and cancer. The goal of this project is to assist in the discovery of inhibitors of these enzymes that could be used to study ApA function and the cellular role of these nudix enzymes.
View Article and Find Full Text PDFJ Bacteriol
April 2020
Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
Diadenosine tetraphosphate (ApA) is a dinucleotide found in both prokaryotes and eukaryotes. In bacteria, its cellular levels increase following exposure to various stress signals and stimuli, and its accumulation is generally correlated with increased sensitivity to a stressor(s), decreased pathogenicity, and enhanced antibiotic susceptibility. ApA is produced as a by-product of tRNA aminoacylation, and is cleaved to ADP molecules by hydrolases of the ApaH and Nudix families and/or by specific phosphorylases.
View Article and Find Full Text PDFNat Commun
February 2020
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.
It has been more than 50 years since the discovery of dinucleoside polyphosphates (NpNs) and yet their roles and mechanisms of action remain unclear. Here, we show that both methylated and non-methylated NpNs serve as RNA caps in Escherichia coli. NpNs are excellent substrates for T7 and E.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2019
Faculty of Health Sciences, University of Macau, Macau SAR, China;
Second messenger molecules play important roles in the responses to various stimuli that can determine a cell's fate under stress conditions. Here, we report that lethal concentrations of aminoglycoside antibiotics result in the production of a dinucleotide alarmone metabolite-diadenosine tetraphosphate (Ap4A), which promotes bacterial cell killing by this class of antibiotics. We show that the treatment of with lethal concentrations of kanamycin (Kan) dramatically increases the production of Ap4A.
View Article and Find Full Text PDFJ Struct Biol
September 2017
Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India. Electronic address:
Diadenosine polyphosphates (ApA, n=2-6), particularly ApA, are involved in several important physiological processes. The substantial sequence identity of the Nudix hydrolase domain (domain 1) of Mycobacterium smegmatis MutT1 (MsMutT1) with a known ApA hydrolase suggested that MsMutT1 could also hydrolyse diadenosine polyphosphates. Biochemical experiments yielded results in conformity with this suggestion, with ApA as the best among the substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!