Horizontal cells typical of the vertebrate retina are strongly coupled by gap junctions. The resulting horizontal cell network has extremely large receptive fields that extend well beyond the boundaries of a single dendritic tree. This network has been modeled as a syncytium of cytoplasm bounded by cell membrane (Lamb 1976; Naka & Rushton, 1967). Horizontal cells in the primate retina are also coupled by gap junctions, but their receptive fields are relatively small and in some cases may approximate the span of the dendritic tree of an individual cell (Packer & Dacey, 2002). The receptive field of the macaque H1 horizontal cell type has been modeled as the sum of two spatial components: a strong but small diameter excitatory center, and a weak but broad excitatory surround. Here we explore the hypothesis that the receptive field center of H1 cells derives from direct cone synaptic input and that the synergistic surround derives from gap-junctional coupling among H1 cell neighbors. We measured the receptive field structure of H1 cells in the presence of carbenoxolone, a gap junction blocker, to determine the effects of uncoupling center and surround components and compared these data to a neural simulation of the H1 network in which gap-junctional conductance could be manipulated. Carbenoxolone reduced the surround component and eliminated irregularities in spatial structure thought to be associated with the surround. The effects of carbenoxolone could be mimicked by manipulating gap-junctional conductance in an H1 cell network simulation. These results provide strong support for the two-component model of H1 receptive field structure. In addition, carbenoxolone eliminated a slow depolarization following light onset thought to be mediated by cone-H1 feedback (Kamermans & Spekreijse, 1999). Low concentrations of cobalt, a calcium channel blocker that spares gap junctions, had an effect similar to that of carbenoxolone but did not affect receptive field structure. These results are consistent with a calcium-mediated mechanism of feedback from H1 cells to cones that is independent of the synergistic two-component model of receptive field organization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/5.11.9 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.
View Article and Find Full Text PDFCells
January 2025
Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan.
While the impact of (-)-epigallocatechin-3-gallate (EGCG) on modulating nociceptive secondary neuron activity has been documented, it is still unknown how EGCG affects the excitability of nociceptive primary neurons in vivo. The objective of the current study was to investigate whether administering EGCG locally in rats reduces the excitability of nociceptive primary trigeminal ganglion (TG) neurons in response to mechanical stimulation in vivo. In anesthetized rats, TG neuronal extracellular single unit recordings were made in response to both non-noxious and noxious mechanical stimuli.
View Article and Find Full Text PDFElife
January 2025
Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
Neuromodulators have major influences on the regulation of neural circuit activity across the nervous system. Nitric oxide (NO) has been shown to be a prominent neuromodulator in many circuits and has been extensively studied in the retina. Here, it has been associated with the regulation of light adaptation, gain control, and gap junctional coupling, but its effect on the retinal output, specifically on the different types of retinal ganglion cells (RGCs), is still poorly understood.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215.
Visuocortical responses are regulated by gain control mechanisms, giving rise to fundamental neural and perceptual phenomena such as surround suppression. Suppression strength, determined by the composition and relative properties of stimuli, controls the strength of neural responses in early visual cortex, and in turn, the subjective salience of the visual stimulus. Notably, suppression strength is modulated by feature similarity; for instance, responses to a center-surround stimulus in which the components are collinear to each other are weaker than when they are orthogonal.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China.
Electrocardiogram (ECG) signals contain complex and diverse features, serving as a crucial basis for arrhythmia diagnosis. The subtle differences in characteristics among various types of arrhythmias, coupled with class imbalance issues in datasets, often hinder existing models from effectively capturing key information within these complex signals, leading to a bias towards normal classes. To address these challenges, this paper proposes a method for arrhythmia classification based on a multi-branch, multi-head attention temporal convolutional network (MB-MHA-TCN).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!