Mineralised tissues as nanomaterials: analysis by atomic force microscopy.

IEE Proc Nanobiotechnol

Bone and Mineral Centre, Department of Medicine, University College London, London WC1E 6BT, UK.

Published: October 2005

Mineralised tissues, such as bone, consist of two material phases: collagen protein fibrils that form the structural models upon which the mineral, calcium hydroxyapatite, is subsequently deposited. Collagen and mineral are removed in a three-dimensional manner by osteoclasts during bone turnover in skeletal growth or repair, and matrix proteins are replaced by the synthetic activity of osteoblasts and then calcify. The resolution of atomic force microscopy and use of unmodified, fully calcified samples has enabled the imaging of the overall bone and dentine structure, including collagen and mineral phases. Mineral crystals, in the diameter size range of 225 nm up to 1.4 microm, were found in unmodified bone and dentine respectively. D-banded collagen is observed in dentine after acid treatment and in bone after osteoclast-mediated matrix resorption; axial periodicity values of approximately 67 and 69 nm are observed, respectively. These experimental approaches have enabled the structure of mineralised tissues to be examined in native samples and will facilitate the study of bone structure in important clinical disorders of the skeleton, such as osteoporosis.

Download full-text PDF

Source
http://dx.doi.org/10.1049/ip-nbt:20050004DOI Listing

Publication Analysis

Top Keywords

mineralised tissues
12
atomic force
8
force microscopy
8
collagen mineral
8
bone dentine
8
bone
6
tissues nanomaterials
4
nanomaterials analysis
4
analysis atomic
4
microscopy mineralised
4

Similar Publications

Sport participation affects body composition and bone health, but the association between sport, body composition, and bone health in female athletes is complex. We compared areal bone mineral density (aBMD, DXA) and tibial volumetric bone mineral density (vBMD), geometry, microarchitecture, and estimated strength (HR-pQCT) in cross-country runners (n = 22), gymnasts (n = 23) and lacrosse players (n = 35), and investigated associations of total body lean mass (TBLM), team, and their interaction with tibial bone outcomes. Total body (TB), total hip (TH), femoral neck (FN), and lumbar spine (LS) aBMD were higher in gymnasts than runners (p < 0.

View Article and Find Full Text PDF

Selenium (Se) is a naturally occurring metalloid in soils and rocks that is released by weathering processes; it is also enriched by some anthropogenic activities, including mining and agriculture. The mechanism of Se aquatic toxicity has been understood for several decades; at elevated concentrations, dietary Se can accumulate in maternal tissues of fish and birds, become deposited into their eggs, and can potentially result in impaired embryological development. North American environmental regulations have acknowledged differences in species sensitivity and variation among aquatic environments (i.

View Article and Find Full Text PDF

A protein corona modulates the function of mineralization-competent matrix vesicles.

JBMR Plus

February 2025

Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil.

Mineralizing cells release a special class of extracellular vesicles known as matrix vesicles (MV), crucial for bone mineralization. Following their release, MV anchor to the extracellular matrix (ECM), where their highly specialized enzymatic machinery facilitates the formation of seed mineral within the MV's lumen, subsequently releasing it onto the ECM. However, how MV propagate mineral onto the collagenous ECM remains unclear.

View Article and Find Full Text PDF

A c-type lectin with dual function of immunology and mineralization from the freshwater oyster ( Lea).

Front Immunol

January 2025

Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.

Background: Shell and pearl formation in bivalves is a sophisticated biomineralization process that encompasses immunological and mineralization aspects, particularly during shell repair and the initial stages of pearl cultivation when a nucleus is inserted. Here, we describe a novel C-type lectin, HcLec1, isolated and characterized from the freshwater pearl mussel Lea.

Methods: Immune challenge, RNA interference (RNAi) experiments, ELISA, and antibacterial assays were employed to investigate the role of HcLec1 in innate immunity.

View Article and Find Full Text PDF

An Aligned-to-Random PLGA/Col1-PLGA/nHA Bilayer Electrospun Nanofiber Membrane Enhances Tendon-to-Bone Healing in a Murine Model.

Am J Sports Med

January 2025

Department of Orthopaedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, China.

Background: The challenge of achieving effective tendon-to-bone healing remains a significant concern in sports medicine, necessitating further exploration. Biomimetic electrospun nanomaterials present promising avenues for improving this critical healing process.

Purpose: To investigate the biological efficacy of a novel aligned-to-random PLGA/Col1-PLGA/nHA bilayer electrospun nanofiber membrane in facilitating tendon-to-bone healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!