Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A variety of methods have been developed for the detection of the binding of the complementary strand of DNA to a gene chip using electrical rather than the established optical signal techniques. Chip-based DNA sensors offer sensitivity, specificity, parallelisation and miniaturisation for the detection of selected DNA sequences or mutated genes associated with human diseases. Problems associated with the established fluorescence-based optical detection technique include the high equipment costs and the need to use sophisticated numerical algorithms to interpret the data. These problems generally limit its use to research laboratories and make it hard to adapt this detection scheme for on-site or point-of-care use. An electrical readout might be a solution to these problems. A review of a number of different approaches to achieve an electrical readout for a DNA chip is presented. The review covers various methods that are based on the use of metal nanoparticles as labels and also electrochemical methods that use polymer-modified electrodes, DNA-specific redox reporters, and DNA-mediated charge transport techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1049/ip-nbt:20045020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!