A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Understanding the origin of metal-sulfur vibrations in an oxo-molybdenum dithiolene complex: relevance to sulfite oxidase. | LitMetric

AI Article Synopsis

  • X-ray crystallography and resonance Raman spectroscopy have been employed to analyze the compound (Tp*)MoO(qdt), a significant model for oxomolybdenum enzymes relevant to sulfite oxidase.
  • The crystal structure of (Tp*)MoO(qdt) reveals a distorted six-coordinate geometry and it crystallizes in the triclinic space group P1, showing bond lengths and angles similar to another related compound, (Tp*)MoO(bdt).
  • Differences in electronic structure and reduction potential between (Tp*)MoO(qdt) and (Tp*)MoO(bdt) are primarily due to variations in sulfur donor charges, though angular distortion of the dithiolene ligands may influence electronic interactions and contribute to

Article Abstract

X-ray crystallography and resonance Raman (rR) spectroscopy have been used to further characterize (Tp*)MoO(qdt) (Tp* is hydrotris(3,5-dimethyl-1-pyrazolyl)borate and qdt is 2,3-quinoxalinedithiolene), which represents an important benchmark oxomolybdenum mono-dithiolene model system relevant to various pyranopterin Mo enzyme active sites, including sulfite oxidase. The compound (Tp*)MoO(qdt) crystallizes in the triclinic space group, P1, where a = 9.8424 (7) A, b = 11.2323 (8) A, c = 11.9408 (8) A, alpha = 92.7560 (10) degrees, beta = 98.9530 (10) degrees, and gamma = 104.1680 (10) degrees. The (Tp*)MoO(qdt) molecule exhibits the distorted six-coordinate geometry characteristic of related oxo-Mo(V) systems possessing a single coordinated dithiolene ligand. The first coordination sphere bond lengths and angles in (Tp*)MoO(qdt) are very similar to the corresponding structural parameters for (Tp*)MoO(bdt) (bdt is 1,2-benzenedithiolene). The relatively small inner-sphere structural variations observed between (Tp*)MoO(qdt) and (Tp*)MoO(bdt) strongly suggest that geometric effects are not a major contributor to the significant electronic structural differences reported for these two oxo-Mo(V) dithiolenes. Therefore, the large differences observed in the reduction potential and first ionization energy between the two molecules appear to derive primarily from differences in the effective nuclear charges of their respective sulfur donors. However, a subtle perturbation to Mo-S bonding is implied by the nonplanarity of the dithiolene chelate ring, which is defined by the fold angle. This angular distortion (theta = 29.5 degrees in (Tp*)MoO(qdt); 21.3 degrees in (Tp*)MoO(bdt)) observed between the MoS2 and S-C=C-S planes may contribute to the electronic structure of these oxo-Mo dithiolene systems by controlling the extent of S p-Mo d orbital overlap. In enzymes, the fold angle may be dynamically modulated by the pyranopterin, thereby functioning as a transducer of vibrational energy associated with protein conformational changes directly to the active site via changes in the fold angle. This process could effectively mediate charge redistribution at the active site during the course of atom- and electron-transfer processes. The rR spectrum shows bands at 348 and 407 cm(-1). From frequency analysis of the normal modes of the model, [(NH3)3MoO(qdt)]1+, using the Gaussian03 suite of programs, these bands are assigned as mixed-mode Mo-S vibrations of the five-membered Mo-ditholene core structure. Raman spectroscopy has also provided additional evidence for an in-plane pseudo-sigma dithiolene S-Mo d(xy) covalent bonding interaction in (Tp*)MoO(qdt) and related oxo-Mo-dithiolenes that has implications for electron-transfer regeneration of the active site in sulfite oxidase involving the pyranopterin dithiolene.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic0506815DOI Listing

Publication Analysis

Top Keywords

sulfite oxidase
12
fold angle
12
active site
12
raman spectroscopy
8
degrees tp*mooqdt
8
tp*mooqdt
7
dithiolene
6
degrees
5
understanding origin
4
origin metal-sulfur
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: