Acute hypoxia dilates most systemic arteries leading to increased tissue perfusion. We showed that at high stimulus conditions, porcine coronary artery was relaxed by hypoxia without a change in [Ca(2+)](i). This 'Ca(2+)-desensitizing hypoxic relaxation' was validated in permeabilized porcine coronary artery smooth muscle (PCASM) in which hypoxia decreased force and myosin regulatory light chain phosphorylation (p-MRLC) despite fixed [Ca(2+)]. Rho kinase-dependent phosphorylation of MYPT1 (p-MYPT1) is associated with decreased MRLC phosphatase (MLCP) activity, and increased Ca(2+) sensitivity of both p-MRLC and force. We tested the hypothesis that hypoxia induces Ca(2+)-desensitizing hypoxic relaxation via dephosphorylation of p-MYPT1, consequently increasing MLCP activity and thus decreasing p-MRLC. alpha-Toxin-permeabilized PCASM pretreated with ATPgammaS did not relax in response to hypoxia. Moreover, when MRLC but not MYPT1 was protected from ATPgammaS thiophosphorylation by the MRLC kinase inhibitor ML7 (300 mum), hypoxia remained ineffective. In contrast, hypoxic relaxation was preserved with further addition of the Rho kinase inhibitor Y27632 (1 mum), to attenuate thiophosphorylation of MYPT1. Importantly, measurements of p-MRLC, and p-MYPT1 at T696 and T853 (human sequence) paralleled that of force. We conclude that Ca(2+)-desensitizing hypoxic relaxation requires dephosphorylation of p-MYPT1. Moreover, no kinases, other then those inhibited by ML7 and Y27632, nor their associated phosphoproteins can be involved in Ca(2+)-desensitizing hypoxic relaxation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779640 | PMC |
http://dx.doi.org/10.1113/jphysiol.2005.104083 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!