A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of exercise-induced arterial hypoxaemia and work rate on diaphragmatic fatigue in highly trained endurance athletes. | LitMetric

Diaphragmatic fatigue occurs in highly trained athletes during exhaustive exercise. Since approximately half of them also exhibit exercise-induced arterial hypoxaemia (EIAH) during high-intensity exercise, the present study sought to test the hypothesis that arterial hypoxaemia contributes to exercise-induced diaphragmatic fatigue in this population. Ten cyclists ( : 70.0 +/- 1.6 ml kg(-1) min(-1); mean +/-s.e.m.) completed, in a balanced ordering sequence, one normoxic (end-exercise arterial O(2) saturation (S(a,O(2))): 92 +/- 1%) and one hyperoxic (F(I,O(2)): 0.5% O(2); S(a,O(2)) : 97 +/- 1%) 5 min exercise test at intensities equal to 80 +/- 3 and 90 +/- 3% of maximal work rate (WR(max)), respectively, producing the same tidal volume (V(T)) and breathing frequency (f) throughout exercise. Cervical magnetic stimulation was used to determine reduction in twitch transdiaphragmatic pressure (P(di,tw)) during recovery. Hyperoxic exercise at 90% WR(max) induced significantly (P= 0.022) greater post-exercise reduction in P(di,tw) (15 +/- 2%) than did normoxic exercise at 80% WR(max) (9 +/- 2%), despite the similar mean ventilation (123 +/- 8 and 119 +/- 8 l min(-1), respectively), breathing pattern (V(T): 2.53 +/- 0.05 and 2.61 +/- 0.05 l, f: 49 +/- 2 and 46 +/- 2 breaths min(-1), respectively), mean changes in P(di) during exercise (37.1 +/- 2.4 and 38.2 +/- 2.8 cmH(2)O, respectively) and end-exercise arterial lactate (12.1 +/- 1.4 and 10.8 +/- 1.1 mmol l(-1), respectively). The difference found in diaphragmatic fatigue between the hyperoxic (at higher leg work rate) and the normoxic (at lower leg work rate) tests suggests that neither EIAH nor lactic acidosis per se are likely predominant causative factors in diaphragmatic fatigue in this population, at least at the level of S(a,O(2)) tested. Rather, this result leads us to hypothesize that blood flow competition with the legs is an important contributor to diaphragmatic fatigue in heavy exercise, assuming that higher leg work required greater leg blood flow.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779675PMC
http://dx.doi.org/10.1113/jphysiol.2005.102442DOI Listing

Publication Analysis

Top Keywords

diaphragmatic fatigue
24
+/-
17
work rate
16
arterial hypoxaemia
12
leg work
12
exercise-induced arterial
8
highly trained
8
exercise
8
fatigue population
8
end-exercise arterial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!