Fullerene was entrapped in polyvinylpyrrolidone of 60-80 kDa at a molar ratio range of 0.42-0.67:1, resulting in a water-soluble derivative with a mean particle diameter of about 688 nm, named "Radical Sponge" because of its ROS-scavenging ability as previously demonstrated, and examined in the present study for its photo-biological actions toward human skin keratinocytes HaCaT. The keratinocytes were repeatedly irradiated with a visible light of wavelengths of 400-2000 nm (approximately 19,800 lux) in the presence or absence of Radical Sponge of 25-75 microM and did not exhibit any photo-cytotoxicity due to coexistent Radical Sponge as compared with the sham-irradiation control. Radical Sponge exerted a more marked cytoprotection at doses of 10-40 microM against UVA irradiation of 30 J/cm(2) when it was pre-irradiationally administered and rinsed out immediately before the irradiation, than when administered only during or after the irradiation, indicating the preventive rather than therapeutic or ray-sheltering effect of Radical Sponge on UVA injuries. Cytoprotection by Radical Sponge against UVA was achieved at the advisable range doses of 10-40 microM in contrast to no effect of polyvinylpyrrolidone alone; its dose-dependency was advantageous over that of VC-IP, a tetra-alkyl-esterized provitamin C, which became less cytoprotective above 20 microM. Thus, Radical Sponge is expected as an anti-UVA-preventive agent without visible-light-catalyzed cytotoxicity toward human skin keratinocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2005.12.011 | DOI Listing |
Nanoscale
December 2024
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
Multiple functional tailored materials have shown great potential for both pollutant degradation and freshwater recovery. In this study, we synthesized densely distributed Co onto carbon-layer-coated Ni/AlO hydrangea composites (Ni/AlO@Co) the polymerization of dopamine under a controlled graphitized process. The characterization results revealed that Ni/AlO@Co, with abundant exposed bimetallic Co-Ni species on the surface of AlO, could afford accessible catalytic sites for persulphate activation and subsequent pollutant degradation.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:
Two-dimensional (2D) MoS has been widely used to remove antibiotics. However, low selectivity for antibiotic pollutants, dependence on applied energy and oxidant, and secondary contamination are still the bottlenecks of this system for treating antibiotic wastewater. In this study, we proposed a three-dimensional (3D) material (3MoS/BMBC@MF) based on MoS and biochar with melamine sponge as the backbone.
View Article and Find Full Text PDFPhotochem Photobiol Sci
December 2024
Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
New photocatalytic materials based on complex oxides and a widely used and cheap polymer (PMMA) have been prepared. Among complex oxides previously investigated, the following have been used-RbTeWO, CsTeMoO, CsVTeO, NaVMoO, KVMoO. For comparison, the binary oxides TiO and WO were used.
View Article and Find Full Text PDFEnviron Microbiol
September 2024
College of Science and Engineering, James Cook University, Townsville, Queensland, Australia.
Sponge microbiomes are often highly diverse making it difficult to determine which lineages are important for maintaining host health and homeostasis. Characterising genomic traits associated with symbiosis can improve our knowledge of which lineages have adapted to their host and what functions they might provide. Here we examined five microbial families associated with sponges that have previously shown evidence of cophylogeny, including Endozoicomonadaceae, Nitrosopumilaceae, Spirochaetaceae, Microtrichaceae and Thermoanaerobaculaceae, to better understand the mechanisms behind their symbiosis.
View Article and Find Full Text PDFChempluschem
December 2024
Department of Chemistry, UiT The Arctic University of Norway, Tromsø, 9037, Norway.
Nitroxides are stable organic radicals with exceptionally long lifetimes, which render them uniquely suitable as observable probes or polarising agents for spectroscopic investigation of biomolecular structure and dynamics. Radical-based probes for biological applications are ideally characterized by both robustness towards reductive degradation and beneficial electron spin relaxation parameters. These properties are largely influenced by the molecular structure of the nitroxide scaffold, and also by the conformations it prefers to adopt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!