Hepatitis C virus (HCV) is considered one of the most dangerous pathogens since about 3% of the world population is HCV-infected and the virus is a major cause of hepatitis, cirrhosis, and liver carcinoma. A need for a more efficient therapy prompted us to investigate new class of compounds, such as tropolone derivatives that possess antiviral, antibacterial, and antifungal activities. To synthesize bromo- and morpholinomethyl-analogues of tropolone, the previously reported methods were modified. The influence of new derivatives on the activity of the helicase and NTP-ase of HCV was investigated. The most potent inhibitory effect in the fluorometric helicase assay was exerted by 3,7-dibromo-5-morpholinomethyltropolone, for which the IC50 value was at low micromolar range. All the morpholino-derivatives had inhibitory activities higher than those of the non-modified analogues. Low toxicity in a yeast-based toxicity assay indicates that these compounds could be further modified to develop potent inhibitors of the HCV helicase and of viral replication.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2006.01.015DOI Listing

Publication Analysis

Top Keywords

tropolone derivatives
8
searching anti-hcv
4
anti-hcv therapy
4
therapy synthesis
4
synthesis properties
4
properties tropolone
4
derivatives hepatitis
4
hepatitis virus
4
virus hcv
4
hcv considered
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!