Background: Hypoxia-inducible transcription factor-1alpha (HIF-1alpha), which plays an important role in controlling the hypoxia-induced glycolysis pathway, is a "master" gene in the tissue hypoxia response during tumor development. However, its role in the apoptosis of non-small cell lung cancer remains unknown. Here, we have studied the effects of HIF-1alpha on apoptosis by modulating HIF-1alpha gene expression in A549 cells through both siRNA knock-down and over-expression.

Methods: A549 cells were transfected with a HIF-1alpha siRNA plasmid or a HIF-1alpha expression vector. Transfected cells were exposed to a normoxic or hypoxic environment in the presence or absence of 25 mM HEPES and 2-deoxyglucose (2-DG) (5 mM). The expression of three key genes of the glycolysis pathway, glucose transporter type 1(GLUT1), phosphoglycerate kinase 1(PGK1), and hexokinase 1(HK1), were measured using real-time RT-PCR. Glycolysis was monitored by measuring changes of pH and lactate concentration in the culture medium. Apoptosis was detected by TUNEL assay and flow cytometry.

Results: Knocking down expression of HIF-1alpha inhibited the glycolysis pathway, increased the pH of the culture medium, and protected the cells from hypoxia-induced apoptosis. In contrast, over-expression of HIF-1alpha accelerated glycolysis in A549 cells, decreased the pH of the culture medium, and enhanced hypoxia-induced apoptosis. These effects of HIF-1alpha on glycolysis, pH of the medium, and apoptosis were reversed by treatment with the glycolytic inhibitor, 2-DG. Apoptosis induced by HIF-1alpha over-expression was partially inhibited by increasing the buffering capacity of the culture medium by adding HEPES.

Conclusion: During hypoxia in A549 cells, HIF-1alpha promotes activity of the glycolysis pathway and decreases the pH of the culture medium, resulting in increased cellular apoptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1402310PMC
http://dx.doi.org/10.1186/1471-2407-6-26DOI Listing

Publication Analysis

Top Keywords

glycolysis pathway
20
culture medium
20
a549 cells
16
hif-1alpha
10
apoptosis
9
hypoxia-inducible transcription
8
transcription factor-1alpha
8
glycolysis
8
effects hif-1alpha
8
medium apoptosis
8

Similar Publications

MRSA's resistance poses a global health challenge. This study investigates lysine succinylation in MRSA using proteomics and bioinformatics approaches to uncover metabolic and virulence mechanisms, with the goal of identifying novel therapeutic targets. Mass spectrometry and bioinformatics analyses mapped the MRSA succinylome, identifying 8 048 succinylation sites on 1 210 proteins.

View Article and Find Full Text PDF

Construction of cuproptosis-related genes risk model predicts the prognosis of Uterine Corpus Endometrial Carcinoma.

Sci Rep

January 2025

Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint, Guangzhou, 510000, China.

Cuproptosis, a recently discovered form of cell death, has emerged as a crucial player in tumor development, although its role in uterine corpus endometrial carcinoma (UCEC) remains inadequately explored. This study aims to identify prognostically relevant cuproptosis-related genes in endometrial cancer. Cuproptosis-related genes were sourced from previously published studies and the FerrDb database.

View Article and Find Full Text PDF

Fructose-Driven glycolysis supports synaptic function in subterranean rodent - Gansu Zokor (Eospalax cansus).

Neuroscience

January 2025

Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China. Electronic address:

Several studies indicate that fructose can be used as an energy source for subterranean rodents. However, how subterranean rodents utilize fructose metabolism with no apparent physiological drawbacks remains poorly understood. In the present study, we measured field excitatory postsynaptic potentials (fEPSPs) in hippocampal slices from Gansu zokor and SD rats hippocampi before and 60 min after replacement of 10 mM glucose in the artificial cerebrospinal fluid (ACSF) with 10 mM fructose (gassed with 95 % O and 5 % CO).

View Article and Find Full Text PDF

Coptisine improves LPS-induced anxiety-like behaviors by regulating the Warburg effect in microglia via PKM2.

Biomed Pharmacother

January 2025

Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China. Electronic address:

Neuroinflammation mediated by microglia is considered the primary cause and pathological process of anxiety. Abnormal glycolysis of microglia is observed during microglia activation. However, whether regulating the Warburg effect in microglia can effectively intervene anxiety and its potential mechanisms have not been elucidated.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!