Complementarity and clustering in a simple model mixed bilayer.

J Chem Phys

Department of Chemistry, Emory University, Atlanta, Georgia 30032, USA.

Published: January 2006

AI Article Synopsis

  • A bilayer with long and short lipids is modeled to study how they interact, particularly focusing on the repulsions between long lipid tails.
  • Monte Carlo simulations reveal that the lipids tend to cluster together based on their length, with maximum clustering occurring when the packing density is highest.
  • As the system becomes more ordered, the effect of clustering diminishes, but the presence of complementary clusters on either side of the bilayer allows for more movement within each cluster until they eventually lock into an orderly arrangement.

Article Abstract

A bilayer of uniform thickness containing a mixture of long and short lipids is simulated using a parallel hard-rod model to illustrate the effect of transbilayer repulsions between the tails of the long component. Monte Carlo simulations show considerable entropy-driven clustering within each layer. Demixing reaches a maximum at the highest packing fraction of the liquid state and decreases as the system orders. The formation of complementary clusters of long and short rods on opposite sides of the bilayer increases translational freedom within each cluster by reducing constraints imposed by the opposing leaflet, an effect that becomes less important as rods lock into facing hexagonally ordered arrays.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2162535DOI Listing

Publication Analysis

Top Keywords

long short
8
complementarity clustering
4
clustering simple
4
simple model
4
model mixed
4
mixed bilayer
4
bilayer bilayer
4
bilayer uniform
4
uniform thickness
4
thickness mixture
4

Similar Publications

Medium- and long-chain triacylglycerols (MLCTs) are regarded as healthy premium oils; however, the health benefits of novel MLCTs enriched with lauric and α-linolenic acids are still not fully understood. This study examined the health benefits of lauric-α-linolenic structural lipids (ALSL) and physical mixture (PM) with a similar fatty acid composition in mice with obesity induced by the high-fat diet (HFD). The data indicated that ALSL is more effective than PM in counteracting obesity, insulin resistance, hyperlipidaemia, liver injury, and systemic inflammation in HFD-induced mice.

View Article and Find Full Text PDF

In a series of studies on blood-brain barrier transportable peptides, a soybean dipeptide, Tyr-Pro, penetrated the mouse brain parenchyma after oral intake and improved short and long memory impairment in acute Alzheimer's model mice. Here, we aimed to clarify the anti-dementia effects of this peptide administered to SAMP8 mice prior to dementia onset. At the end of the 25-week protocol in 16-week-old SAMP8 mice, Tyr-Pro (10 mg/kg/day) significantly improved the reduced spatial learning ability compared with that in the control and amino acid (Tyr + Pro) groups as indicated by the results of Morris water maze tests conducted for five consecutive days.

View Article and Find Full Text PDF

Distinguishing local isomorphism classes in quasicrystals by high-order harmonic spectroscopy.

Nat Commun

December 2024

Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.

Electron diffraction spectroscopy is a fundamental tool for investigating quasicrystal structures, which unveils the quasiperiodic long-range order. Nevertheless, it falls short in effectively distinguishing separate local isomorphism classes. This is a long outstanding problem.

View Article and Find Full Text PDF

Background: Evidence indicates a wide range of andrological alterations in patients with the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection and Coronavirus Disease 2019 (COVID-19).

Aim: To provide an update on the andrological effects of SARS-CoV-2 infection and COVID-19.

Methods: PubMed/MEDLINE and Institutional websites were searched for randomized clinical trials, non-systematic reviews, systematic reviews, and meta-analyses.

View Article and Find Full Text PDF

Ultrasmall-scale semiconductor devices (≤5 nm) are advancing technologies, such as artificial intelligence and the Internet of Things. However, the further scaling of these devices poses critical challenges, such as interface properties and oxide quality, particularly at the high-/semiconductor interface in metal-oxide-semiconductor (MOS) devices. Existing interlayer (IL) methods, typically exceeding 1 nm thickness, are unsuitable for ultrasmall-scale devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!