Previous work has shown that novel amphipalhic oligo and polyribonucleotides are potent inhibitors of HIV. It was hypothesized that the mechanism(s) of action for these compounds might be inhibition of retroviral reverse transcriptase (RT) and/or viral uptake by cells. A fluorescent oligonucleotide analog was prepared, and confocal microscopy studies were undertaken in order to examine oligonucleotide-cell interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15257770500268913DOI Listing

Publication Analysis

Top Keywords

confocal microscopy
8
microscopy studies
8
studies model
4
model oligoribonucleotide
4
oligoribonucleotide hiv
4
hiv inhibitor
4
inhibitor previous
4
previous work
4
work novel
4
novel amphipalhic
4

Similar Publications

Characterizing the heterogeneous contamination of commercial paper and board food packaging at different scales.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

January 2025

UMR SayFood 0782, Université Paris-Saclay, INRAE, Palaiseau, AgroParisTech, France.

Assessing the contamination of paper and board (P&B) food packaging materials poses significant challenges due to the sensitivity limits of analytical methods and the low precision of sampling processes. This study aims to enhance the understanding of P&B food packaging contamination by investigating the distribution of contaminants at different scales using a combination of chromatographic and spectroscopic techniques. A total of 36 substances were targeted, including phthalates, photoinitiators, and bisphenol A.

View Article and Find Full Text PDF

Nanophotonic inspection of deep-subwavelength integrated optoelectronic chips.

Sci Adv

January 2025

Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China.

Artificial nanostructures with ultrafine and deep-subwavelength features have emerged as a paradigm-shifting platform to advanced light-field management, becoming key building blocks for high-performance integrated optoelectronics and flat optics. However, direct optical inspection of integrated chips remains a missing metrology gap that hinders quick feedback between design and fabrications. Here, we demonstrate that photothermal nonlinear scattering microscopy can be used for direct imaging and resolving of integrated optoelectronic chips beyond the diffraction limit.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are membrane-bound structures produced and released into the extracellular space by all types of cells. Due to their characteristics, EVs play crucial roles in cellular communication and signaling, holding an immense potential as biomarkers and molecular transporters. Various methods have been developed to label and characterize EVs, however, visualizing EVs remains a process that requires highly specialized and expensive equipment, which is not always available in all the laboratories.

View Article and Find Full Text PDF

Techniques that enable precise manipulations of subsets of neurons in the fly central nervous system (CNS) have greatly facilitated our understanding of the neural basis of behavior. Split-GAL4 driver lines allow specific targeting of cell types in and other species. We describe here a collection of 3060 lines targeting a range of cell types in the adult CNS and 1373 lines characterized in third-instar larvae.

View Article and Find Full Text PDF

Angiostrongylus cantonensis (AC) is the leading cause of eosinophilic meningoencephalitis worldwide. The neuroimmune interactions between peripheral and central immune systems in angiostrongyliasis remain unclear. In this study, significant infiltration of eosinophils, myeloid cells, macrophages, neutrophils, and Ly6C monocytes is observed in the brains of AC-infected mice, with macrophages being the most abundant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!