Neurotropic coronavirus infection of mice results in acute encephalomyelitis followed by viral persistence. Whereas cellular immunity controls acute infection, humoral immunity regulates central nervous system (CNS) persistence. Maintenance of serum Ab was correlated with tissue distribution of virus-specific Ab-secreting cells (ASC). Although virus-specific ASC declined in cervical lymph node and spleen after infectious virus clearance, virus-specific serum Ab was sustained at steady levels, with a delay in neutralizing Ab. Virus-specific ASC within the CNS peaked rapidly 1 wk after control of infectious virus and were retained throughout chronic infection, consistent with intrathecal Ab synthesis. Surprisingly, frequencies of ASC in the BM remained low and only increased gradually. Nevertheless, virus-specific ASC induced by peripheral infection localized to both spleen and BM. The data suggest that CNS infection provides strong stimuli to recruit ASC into the inflamed tissue through sustained up-regulation of the CXCR3 ligands CXCL9 and CXCL10. Irrespective of Ag deprivation, CNS retention of ASC coincided with elevated BAFF expression and ongoing differentiation of class II+ to class II-CD138+CD19+ plasmablasts. These results confirm the CNS as a major ASC-supporting environment, even after resolution of viral infection and in the absence of chronic ongoing inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163565 | PMC |
http://dx.doi.org/10.1002/eji.200535123 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!