We used a combination of genome-wide and promoter-specific DNA binding and expression analyses to assess the functional roles of Myod and Myog in regulating the program of skeletal muscle gene expression. Our findings indicate that Myod and Myog have distinct regulatory roles at a similar set of target genes. At genes expressed throughout the program of myogenic differentiation, Myod can bind and recruit histone acetyltransferases. At early targets, Myod is sufficient for near full expression, whereas, at late expressed genes, Myod initiates regional histone modification but is not sufficient for gene expression. At these late genes, Myog does not bind efficiently without Myod; however, transcriptional activation requires the combined activity of Myod and Myog. Therefore, the role of Myog in mediating terminal differentiation is, in part, to enhance expression of a subset of genes previously initiated by Myod.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1383539 | PMC |
http://dx.doi.org/10.1038/sj.emboj.7600958 | DOI Listing |
Cells
January 2025
Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea.
An actin-binding protein, known as Calponin 3 (CNN3), modulates the remodeling of the actin cytoskeleton, a fundamental process for the maintenance of skeletal muscle homeostasis. Although the roles of CNN3 in actin remodeling have been established, its biological significance in myoblast differentiation remains largely unknown. This study investigated the functional significance of CNN3 in myogenic differentiation, along with its effects on actin remodeling and mechanosensitive signaling in C2C12 myoblasts.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Agricultural Economics and Animal Production, School of Agricultural and Environmental Sciences, University of Limpopo, Private Bag X1106, Sovenga 0727, Limpopo, South Africa.
The objective of this study was to determine the relationship between the MRF gene family members and slaughter characteristics in Saanen kids with varying slaughter weights. Twenty male kids of the Turkish Saanen breed were individually fattened for 60 days after weaning under an intensive management system. The kids were divided into two groups: low slaughter weight (L; = 11; ≤29 kg) and high slaughter weight (H; = 13; >29) at the end of the fattening.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea.
Cortactin (CTTN) is an actin-binding protein regulating actin polymerization and stabilization, which are vital processes for maintaining skeletal muscle homeostasis. Despite the established function of CTTN in actin cytoskeletal dynamics, its role in the myogenic differentiation of progenitor cells remains largely unexplored. In this study, we investigated the role of CTTN in the myogenic differentiation of C2C12 myoblasts by analyzing its effects on actin cytoskeletal remodeling, myocardin-related transcription factor A (MRTFA) nuclear translocation, serum response factor (SRF) activation, expression of myogenic transcription factors, and myotube formation.
View Article and Find Full Text PDFJ Anim Sci Technol
November 2024
Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea.
The purpose of this study was comparing performances of three breeds of donor satellite cells for cultured meat and selecting the optimal donor and providing insight into the selection of donors for cultured meat production. Cattle muscle satellite cells were isolated from the muscle tissue of Hanwoo, Holstein, and Jeju black cattle, and then sorted by fluorescence activated cell sorting (FACS). Regarding proliferation of satellite cells, all three breeds showed similar trends.
View Article and Find Full Text PDFJ Anim Sci
January 2024
Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA.
The neuroendocrine hormone melatonin is associated with circadian rhythms and has antioxidant and vasodilative properties. In cattle, melatonin rescues fetal growth during maternal nutrient restriction in a seasonally dependent manner, but melatonin research in swine is limited. The objective of this study was to evaluate the effects of dietary melatonin supplementation during mid to late gestation on circadian rhythm and muscle growth and development of the longissimus dorsi in utero and postnatally.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!