A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Regeneration of canine tracheal cartilage by slow release of basic fibroblast growth factor from gelatin sponge. | LitMetric

We investigated the efficiency of basic fibroblast growth factor (b-FGF) released from a gelatin sponge in the regeneration of tracheal cartilage. A 1-cm gap was made in the midventral portion of each of 10 consecutive cervical tracheal cartilages (rings 4 to 13) in 15 experimental dogs. In the control group (n = 5), the resulting gap was left blank. In the gelatin group (n = 5), a gelatin sponge alone was implanted in the gap. In the b-FGF group (n = 5), a gelatin sponge containing 100 mug b-FGF solution was implanted in the gap. We euthanatized one of the five dogs in each group at 1 month after implantation and one at 3 months and examined the implant sites macroscopically and microscopically. In the control and gelatin groups, no regenerated cartilage was observed in the tracheal cartilage gap at 1 or 3 months. The distances between the cartilage stumps had shrunk. In the b-FGF group, fibrous cartilage had started to regenerate from both host cartilage stumps at 1 month. At 3 months, regenerated fibrous cartilage filled the gap and had connected each of the stumps. The regenerated cartilage was covered with regenerated perichondrium originating from the host perichondrium. Shrinkage of the distance between the host cartilage stumps was not observed in the b-FGF group. We succeeded in inducing cartilage regeneration in the gaps in canine tracheal cartilage rings by using the slow release of b-FGF from a gelatin sponge. The regenerated cartilage induced by b-FGF was fibrous cartilage.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.mat.0000196513.97411.3dDOI Listing

Publication Analysis

Top Keywords

gelatin sponge
20
tracheal cartilage
16
cartilage
14
b-fgf group
12
regenerated cartilage
12
cartilage stumps
12
fibrous cartilage
12
canine tracheal
8
slow release
8
basic fibroblast
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!