The current study describes a statistically significant increase in macrophages (CD68-positive cells) in the decidua of preeclamptic patients. To elucidate the regulation of this monocyte infiltration, expression of monocyte chemoattractant protein-1 (MCP-1) was assessed in leukocyte-free first trimester decidual cells. Confluent decidual cells were primed for 7 days in either estradiol or estradiol plus medroxyprogesterone acetate to mimic the decidualizing steroidal milieu of the luteal phase and early pregnancy. The medium was exchanged for a serum-free defined medium containing corresponding steroids +/- tumor necrosis factor (TNF)-alpha or interleukin (IL)-1beta. After 24 hours, enzyme-linked immunosorbent assay measurements indicated that the addition of medroxyprogesterone acetate did not affect MCP-1 output, whereas 10 ng/ml of TNF-alpha or IL-1beta increased output by 83.5-fold +/- 20.6 and 103.1-fold +/- 14.7, respectively (mean +/- SEM, n = 8, P < 0.05). Concentration-response comparisons revealed that even 0.01 ng/ml of TNF-alpha or IL-1beta elevated MCP-1 output by more than 15-fold. Western blotting confirmed the enzyme-linked immunosorbent assay results, and quantitative reverse transcriptase-polymerase chain reaction confirmed corresponding effects on MCP-1 mRNA levels. The current study demonstrates that TNF-alpha and IL-1beta enhance MCP-1 in first trimester decidua. This finding suggests a mechanism by which recruitment of excess macrophages to the decidua impairs endovascular trophoblast invasion, the primary placental defect of preeclampsia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1606506 | PMC |
http://dx.doi.org/10.2353/ajpath.2006.050082 | DOI Listing |
Stem Cell Rev Rep
January 2025
Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
Dermatologists have been interested in recent advancements in regenerative therapy. Current research is actively investigating the possibility of placental tissue derivatives to decelerate the skin aging process, enhance skin regeneration, reduce scarring, and prevent hair loss. Amniotic membranes (AM) play a crucial role in regenerative medicine as they serve as a suitable means of transporting stem cells, growth hormones, cytokines, and other essential compounds.
View Article and Find Full Text PDFAm J Reprod Immunol
January 2025
State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China.
Background: Alterations in lipid metabolism were reported to impact human fertility; however, there is limited evidence on the association of lipid metabolism with embryo implantation as well as the etiology of recurrent implantation failure (RIF), especially regarding arachidonic acid metabolism.
Methods: Experimental verification research (16 RIF patients and 30 control patients) based on GEO database analysis (24 RIF patients and 24 control patients). The methods in bioinformatics included differential gene screening, functional enrichment analysis, protein-protein interaction network, cluster analysis, weighted gene co-expression network analysis, and so forth.
Int J Mol Sci
December 2024
Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, 40255 Duesseldorf, Germany.
To date, very little is known about how apoptosis and autophagy affect human endometrial stromal cells (ESCs), particularly how these processes might determine the depth of implantation in humans. Before investigating how apoptosis and autophagy might modulate the implantation process in an infertile population, it is necessary to clarify how these processes are regulated in healthy individuals. This study examined the protein expression related to apoptosis and autophagy in primary ESCs from fertile women, particularly in the context of decidualization and embryo contact, using Western blot analysis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Reproductive Medicine and Gynecological Endocrinology, University Medical Centre Maribor, 2000 Maribor, Slovenia.
Extracellular vesicles (EVs) are lipid bilayer-bound particles released from cells that cannot replicate on their own, play a crucial role in intercellular communication, and are implicated in various physiological and pathological processes. Within the domain of embryo culture media research, extensive studies have been conducted to evaluate embryo viability by analyzing spent culture medium. Advanced methodologies such as metabolomic profiling, proteomic and genomic analyses, transcriptomic profiling, non-coding RNA assessments, and oxidative status measurements have been employed to further understand the molecular characteristics of embryos and improve selection criteria for successful implantation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!