A new method for recycling asymmetric catalysts via formation of charge transfer complexes.

Org Lett

Laboratoire de Catalyse Moléculaire, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris Sud, Bât 420, 91405 Orsay, France.

Published: February 2006

[reaction: see text]. A new concept for recycling asymmetric bis(oxazoline)-type catalysts is reported. The formation of charge-transfer complexes between the chiral ligand and trinitrofluorenone and their subsequent precipitation and reuse by addition of new substrate solutions is described. The efficiency of this procedure is demonstrated in a Diels-Alder reaction to reach the expected endo product as major isomer (up to 97% de and 94% ee): the catalyst was used up to 12 times without loss of either activity or selectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol053036aDOI Listing

Publication Analysis

Top Keywords

recycling asymmetric
8
method recycling
4
asymmetric catalysts
4
catalysts formation
4
formation charge
4
charge transfer
4
transfer complexes
4
complexes [reaction
4
[reaction text]
4
text] concept
4

Similar Publications

Asymmetric Membranes Obtained from Sulfonated HIPS Waste with Potential Application in Wastewater Treatment.

Membranes (Basel)

November 2024

CONAHCYT-Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130, Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico.

The recovery and reuse of high-impact polystyrene (HIPS) into high-value products is crucial for reducing environmental thermoplastics waste and promoting sustainable materials for various applications. In this study, asymmetric membranes obtained from sulfonated HIPS waste were used for salt and dye removals. The incorporation of sulfonic acid (-SOH) groups into HIPS waste by direct chemical sulfonation with chlorosulfonic acid (CSA), at two different concentrations, was investigated to impart antifouling properties in membranes for water treatment.

View Article and Find Full Text PDF

TAT-1, a phosphatidylserine flippase, affects molting and regulates membrane trafficking in the epidermis of C. elegans.

Genetics

December 2024

Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming 82071.

Membrane trafficking is a conserved process required for import, export, movement, and distribution of proteins and other macromolecules within cells. The Caenorhabditis elegans NIMA-related kinases NEKL-2 (human NEK8/9) and NEKL-3 (human NEK6/7) are conserved regulators of membrane trafficking and are required for the completion of molting. Using a genetic approach we identified reduction-of-function mutations in tat-1 that suppress nekl-associated molting defects.

View Article and Find Full Text PDF

Ionic liquids have been utilized in numerous significant applications within the field of chemistry, particularly in organic chemistry, due to their unique physical and chemical properties. In the realm of asymmetric transition-metal-catalyzed transformations, chiral ionic-liquid-supported ligands and their corresponding transition-metal complexes have facilitated these processes in unconventional solvents, especially ionic liquids and water. These innovative reaction systems enable the recycling of transition-metal catalysts while producing optically active organic molecules with comparable or even higher levels of chemo-, regio-, and stereoselectivity compared to their parent catalysts.

View Article and Find Full Text PDF

Control over CO2 capture and utilization are important scientific and technological challenges. Although a variety of amine absorbents are used for capture, releasing the captured CO2 is often difficult and limits their recyclability. Therefore, it is crucial to control the strength of the CO2 bond with the absorbent.

View Article and Find Full Text PDF

The development of low-cost, eco-friendly, and earth-friendly electrode materials for energy storage and conversion applications is a highly desirable but challenging task for strengthening the existing renewable energy systems. As part of this study, orange peel extract was utilized to synthesize a magnesium oxide-silicon dioxide hybrid substrate system (MgO-SiO) for coating cobalt oxide nanostructures (CoO) hydrothermal methods. A variety of MgO-SiO compositions were used to produce CoO nanostructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!