[reaction: see text]. The triarylamine nucleus has been attached to a carbon fiber electrode by diazotization of an aminotriphenylamine followed by electrochemical reduction. The resulting electrodes can electrocatalyze the oxidation of organic substrates. In acid, 4-amino-4',4' '-dibromotriphenylamine undergoes dismutation into a mixture of amines containing from 0 to 3 bromine atoms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ol052558n | DOI Listing |
J Am Chem Soc
January 2025
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China.
The dual-site synergistic catalytic mechanism on NiFeOOH suggests weak adsorption of Ni sites and strong adsorption of Fe sites limited its activity toward alkaline oxygen evolution reaction (OER). Large-scale density functional theory (DFT) calculations confirm that Co doping can increase Ni adsorption, while the metal vacancy can reduce Fe adsorption. The combined two factors can further modulate the atomic environment and optimize the free energy toward oxygen-containing intermediates, thus enhancing the OER activity.
View Article and Find Full Text PDFChem Sci
December 2024
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
The search for efficient, earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) has identified unsaturated molybdenum disulfide (MoS) as a leading candidate. This review synthesises recent advancements in the engineering of MoS to enhance its electrocatalytic properties. It focuses on strategies for designing an unsaturated electronic structure on metal catalytic centers and their role in boosting the efficiency of the hydrogen evolution reaction (HER).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Inner Mongolia University, College of Chemistry and Chemical Engineering, 235 West University Street, Saihan District, 010021, Hohhot, CHINA.
Electrocatalytic glycerol oxidation reaction (GOR) to produce high-value formic acid (FA) is hindered by high formation potential of active species and sluggish C-C bond cleavage kinetics. Herein, Ni single-atom (NiSA) and Co single-atom (CoSA) dual sites anchored on nitrogen-doped carbon nanotubes embedded with Ni0.1Co0.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
In the electrocatalytic (EC) degradation process, challenges such as inefficient mass transfer, suboptimal mineralization rates, and limited current efficiency have restricted its broader application. To overcome these obstacles, this study synthesized spherical particle electrodes (FeNi@BC) with superior electrocatalytic performance using a bio-inspired preparation method. A three-dimensional electrocatalytic oxidation system based on FeNi@BC electrode, EC/FeNi@BC, showed excellent degradation efficiency of sulfamethoxazole (SMX), reaching 0.
View Article and Find Full Text PDFTalanta
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China. Electronic address:
The rapid, sensitive and reliable detection of oral cancer overexpressed 1 (ORAOV 1) is crucial for the early, non-invasive diagnosis of oral squamous cell carcinoma (OSCC). Herein, we are the first to construct an ultrasensitive electrochemical (EC) biosensor based on an entropy-driven "two-way signal output" (TWSO) cyclic circuit for salivary ORAOV 1 detection. This innovative TWSO cyclic circuit can skillfully convert by-products into desired signal-generating units, not only reducing the excessive accumulation of by-products but also improving the utilization efficiency of output chains, thereby achieving rapid reaction kinetics and high signal outputs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!