A hydrological-based model (HBV-NP) was applied to a catchment (1900 km2) in the southern part of Sweden. Careful characterization of the present load situation and the potential for improved treatment or reduced soil leaching were analyzed. Several scenarios were modeled to find strategies to reach the Swedish environmental goals of reducing anthropogenic nitrogen load by 30% and phosphorus load by 20%. It was stated that the goals could be reached by different approaches that would affect different polluters and social sectors. However, no single measure was enough by itself. Instead, a combination of measures was necessary to achieve the goals. The nitrogen goal was the most difficult to attain. In order to be cost-effective, these measures should be applied to areas contributing the most to the net loading of the sea. This strategy could reduce the costs by 70%-80% when compared with implementing the measures in the entire catchment. Integrated catchment models may thus be helpful tools for reducing costs in environmental control programs.
Download full-text PDF |
Source |
---|
Environ Sci Pollut Res Int
January 2025
Department of Geography, Hong Kong Baptist University, Hong Kong SAR, China.
Land use changes profoundly affect hydrological processes and water quality at various scales, necessitating a comprehensive understanding of sustainable water resource management. This paper investigates the implications of land use alterations in the Gap-Cheon watershed, analyzing data from 2012 and 2022 and predicting changes up to 2052 using the Future Land Use Simulation (FLUS) model. The study employs the Hydrological Simulation Program-FORTRAN (HSPF) model to assess water quantity and quality dynamics.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China.
A novel method has been developed for the simultaneous online determination of the isotopic compositions of different antimony (Sb) species in a single analytical run using high-performance liquid chromatography (HPLC) coupled with multicollector inductively coupled plasma mass spectrometry (MC-ICPMS), with hydride generation (HG) serving as the interface. Various parameters affecting the precision of Sb isotope analysis including HG conditions, transient signal processing methods and peak integration windows, were optimized. The linear regression slope method and a 100% peak integration window provided the optimal precision.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environment, Tsinghua University, Beijing, 100084, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China. Electronic address:
Urban flooding poses a significant risk to cities worldwide, exacerbated by increasing urbanization and climate change. Effective flood risk management requires comprehensive assessments considering the complex interaction of social, economic, and environmental factors. This study developed an innovative Urban Flood Risk Index (FRI) to quantify and assess flood risk at the sub-catchment level, providing a tool for evidence-based planning and resilient infrastructure development.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Biological Systems Engineering, Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA, USA.
The hydrologic benefits of catchment-scale implementation of stormwater control measures (SCMs) in mitigating the adverse effects of urbanization are well established. Nevertheless, recent studies indicate that the Unified Stormwater Sizing Criteria (USSC) regulations, mandating the combined use of distributed and storage stormwater controls, do not protect channel stability, despite their effectiveness in reducing runoff from impervious surfaces. The USSC are the basis of SCM design in 11 U.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Tetra Tech, Inc., P.O. Box 14409, Research Triangle Park, NC, 27709, United States. Electronic address:
Due to the recent improved availability of global and regional climate change (CC) models and associated data, the projected impact of CC on urban stormwater management is well documented. However, most studies are based on simplified design storm analysis and unit-area runoff models; evaluations of the long-term, continuous hydrologic response of extensive stormwater control measures (SCM) implementation under future CC scenarios are limited. Moreover, channel stability in response to CC is seldom evaluated due to the input data required to develop a long-term, continuous sediment transport model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!