Acetoacetate protects neuronal cells from oxidative glutamate toxicity.

J Neurosci Res

Department of Anatomy and Neurobiology, Institute of Health Science, College of Medicine, Gyeongsang National University, Kyungnam, South Korea.

Published: March 2006

Glutamate cytotoxicity contributes to neuronal degeneration in many central nervous system (CNS) diseases, such as epilepsy and ischemia. We previously reported that a high-fat and low-carbohydrate diet, the ketogenic diet (KD), protects against kainic acid-induced hippocampal cell death in mice. We hypothesized based on these findings that ketosis resulting from KD might inhibit glutamate cytotoxicity, resulting in inhibition of hippocampal neuronal cell death. Therefore, we investigated the role of ketone bodies [acetoacetate (AA) and beta-hydroxybutyrate (beta-OHB)] both in a mouse hippocampal cell line (HT22) and in rat primary hippocampal neurons. As a result, we found that pretreatment with 5 mM lithium AA and 4 mM Na beta-OHB protected the HT22 hippocampal cell line and primary hippocampal neuronal culture against 5 mM glutamate toxicity and that up to 2 hr of pretreatment with 5 mM AA had a protective effect against 5 mM glutamate toxicity in the HT22 cell line. Pretreatment with 5 mM AA decreased ROS production of HT22 cell line at 2 and 8 hr exposure of glutamate, and it decreased the appearance of annexin V-positive HT22 cells, which are indicative of an early stage of apoptosis, and propidium iodide-positive HT22 cells, which are indicative of necrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.20736DOI Listing

Publication Analysis

Top Keywords

glutamate toxicity
12
hippocampal cell
12
glutamate cytotoxicity
8
cell death
8
hippocampal neuronal
8
primary hippocampal
8
ht22 cell
8
ht22 cells
8
cells indicative
8
glutamate
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!