The development and arrangement of the tentacular apparatus of Thysanocardia nigra (Ikeda, 1904) and Themiste pyroides (Chamberlin, 1920) are described and illustrated using scanning electron microscopy. In T. nigra, the tentacular apparatus is composed of two crowns: the nuchal arc enclosing the nuchal organ and a crown of numerous oral tentacles arranged in U-shaped festoons. In early juveniles, two dorsal horn-like protrusions develop into the first, or primary, pair of tentacles of the nuchal arc. The second pair of tentacles of the nuchal arc develops dorsolaterally on the bases of the primary tentacles. Two ventrolateral lobes of the oral disk grow and become subdivided by the longitudinal ciliary groove into anlages of one set of dorsal and one set of ventral tentacles, thus forming a first oral festoon. Later, a pair of dorsolateral lobes develop between the first festoons and the nuchal arc to form a second pair of oral festoons. The third and following pairs of oral festoons develop in the dorsolateral growth zones lateral to the borders of the nuchal arc, where they meet the oral crown. The growing festoons extend down the oral disk and run alongside the head. A new oral tentacle appears directly at/on the base of the previous tentacle, thus giving rise to a typical sympodium with an alternating arrangement of tentacles. In T. pyroides, a second pair of tentacles develops from two ciliary lobes that are ventrolateral outgrowths of the circumoral ciliary field around the terminal mouth opening. The third pair of tentacles appears from the dorsolateral lobes at the base of primary tentacles, between the first two pairs of tentacles. These six tentacles determine the position of six main stems of the tentacular apparatus designated the first tentacles in the corresponding stems. The second tentacle in every stem appears as a ventrolateral outgrowth at the base of the first tentacle. The third and following tentacles in the stem are developed between the two previous tentacles according to a sympodial pattern. In both species, the distinct sympodial pattern in the arrangement of tentacles in the tentacular apparatus is well evidenced by the outlines of the ciliary oral grooves. The branched stems of T. pyroides may be homologized structurally and functionally to the oral festoons of T. nigra. J. Morphol. (c) 2006 Wiley-Liss, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmor.10423 | DOI Listing |
Elife
December 2021
Department of Biological Sciences, University of Arkansas, Fayetteville, United States.
Although specialized mechanosensory cells are found across animal phylogeny, early evolutionary histories of mechanoreceptor development remain enigmatic. Cnidaria (e.g.
View Article and Find Full Text PDFZoological Lett
December 2021
National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia.
The Oweniidae are marine annelids with many unusual features of organ system, development, morphology, and ultrastructure. Together with magelonids, oweniids have been placed within the Palaeoannelida, a sister group to all remaining annelids. The study of this group may increase our understanding of the early evolution of annelids (including their radiation and diversification).
View Article and Find Full Text PDFJ Morphol
February 2021
Departamento de Biodiversidad y Biología Experimental, Laboratorio de Sistemática y Biología de Parásitos de Organismos Acuáticos, Ciudad Universitaria, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.
The scolex ultrastructure was studied in Grillotia (Christianella) carvajalregorum (Cestoda: Trypanorhyncha) using histochemistry and transmission electron microscopy. We show for the first time the presence of scolex glands arranged in two longitudinal acini at the pars vaginalis parenchyma. These glands, along with those scattered in bothrial parenchyma, produce potentially adhesive glycoprotein secretions that are discharged via ducts to the bothrial grooves and apex.
View Article and Find Full Text PDFJ Chromatogr A
July 2017
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA. Electronic address:
The effect of ligand density was studied on protein adsorption and transport behavior in tentacular cation-exchange sorbents at different ionic strengths. Results were obtained for lysozyme, lactoferrin and a monoclonal antibody (mAb) in order to examine the effects of protein size and charge. The combination of ligand density and ionic strength results in extensive variability of the static and dynamic binding capacities, transport rate and binding affinity of the proteins.
View Article and Find Full Text PDFBMC Evol Biol
November 2013
Zoological Museum, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany.
Background: Within the complex metazoan phylogeny, the relationships of the three lophophorate lineages, ectoprocts, brachiopods and phoronids, are particularly elusive. To shed further light on this issue, we present phylogenomic analyses of 196 genes from 58 bilaterian taxa, paying particular attention to the influence of compositional heterogeneity.
Results: The phylogenetic analyses strongly support the monophyly of Lophophorata and a sister-group relationship between Ectoprocta and Phoronida.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!