This study investigates the transfer of Cd and Zn from a soil amended with sewage sludge at rates up to 100 t ha(-1) through a multi-trophic system consisting of barley, the aphid Sitobion avenae and the larvae of the lacewing Chrysoperla carnae. Results show marked differences in the transfer of the two metals. Cadmium was freely accumulated in barley roots, but accumulation in the shoot was restricted to a concentration of around 0.22 mg kg(-1) (dry weight). This limited the transfer of Cd to higher trophic levels and resulted in no significant accumulation of Cd in S. avenae or in C. carnae. Zinc transfer in the system was largely unrestricted, resulting in significant accumulation in roots and shoots, in S. avenae and in C. carnae. Cadmium biomagnification occurred in lacewing pupae, with concentrations up to 3.6 times greater than in aphids. S. avenae biomagnified Zn by a factor of ca. 2.5 at low sludge amendment rates, but biomagnification decreased to a factor of 1.4 at the highest amendment rate. Biomagnification of Zn did not occur in C. carnae, but concentrations were up to 3.5 time higher than in soil. Results are discussed in light of the mechanisms regulating transfer of the two metals in the system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2005.11.074 | DOI Listing |
Nanomicro Lett
January 2025
Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, People's Republic of China.
Building anion-derived solid electrolyte interphase (SEI) with enriched LiF is considered the most promising strategy to address inferior safety features and poor cyclability of lithium-metal batteries (LMBs). Herein, we discover that, instead of direct electron transfer from surface polar groups to bis(trifluoromethanesulfonyl)imide (TFSI) for inducing a LiF-rich SEI, the dipole-induced fluorinated-anion decomposition reaction begins with the adsorption of Li ions and is highly dependent on their mobility on the polar surface. To demonstrate this, a single-layer graphdiyne on MXene (sGDY@MXene) heterostructure has been successfully fabricated and integrated into polypropylene separators.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
Single atom alloys (SAAs) have gained tremendous attention as promising materials with unique physicochemical properties, particularly in catalysis. The stability of SAAs relies on the formation of a single active dopant on the surface of a metal host, quantified by the surface segregation and aggregation energy. Previous studies have investigated the surface segregation of non-ligated and ligated SAAs to reveal the driving forces underlying such phenomena.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, Jyväskylä, FI-40014, Finland.
Designing cost-effective electrocatalysts with fast reaction kinetics and high stability is an outstanding challenge in green hydrogen generation through overall water splitting (OWS). Layered double hydroxide (LDH) heterostructure materials are promising candidates to catalyze both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), the two OWS half-cell reactions. This work develops a facile hydrothermal route to synthesiz hierarchical heterostructure MoS@NiFeCo-LDH and MoS@NiFeCo-Mo(doped)-LDH electrocatalysts, which exhibit extremely good OER and HER performance as witnessed by their low IR-corrected overpotentials of 156 and 61 mV with at a current density of 10 mA cm under light assistance.
View Article and Find Full Text PDFTransition metal-mediated catalytic reduction, oxidation, and hydrofunctionalization reactions are important organic reactions and are considered highly atom-economical. Owing to their unique properties, selenium ligated several transition metals-based complexes have been reported for several catalytic applications. This review presents the synthesis of various selenium-supported transition metal complexes and their catalytic applications in reduction, oxidation, N-alkylation of amines, and hydrofunctionalization reactions.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Thrust of Earth, Ocean and Atmospheric Sciences Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China.
Modulating the electronic structure of noble metals via electronic metal-support interaction (EMSI) has been proven effectively for facilitating molecular oxygen activation and catalytic oxidation reactions. Nevertheless, the investigation of the fundamental mechanisms underlying activity enhancement has primarily focused on metal oxides as supports, especially in the catalytic degradation of volatile organic compounds. In this study, a novel Pt catalyst supported on nitrogen-doped carbon encapsulating FeNi alloy, featuring ultrafine Pt nanoparticles, was synthesized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!