Background: Structural genes of the phenyl-propanoid pathway which encode flavonoid 3'- and 3',5'-hydroxylases (F3'H and F3'5'H) have long been invoked to explain the biosynthesis of cyanidin- and delphinidin-based anthocyanin pigments in the so-called red cultivars of grapevine. The relative proportion of the two types of anthocyanins is largely under genetic control and determines the colour variation among red/purple/blue berry grape varieties and their corresponding wines.
Results: Gene fragments of VvF3'H and VvF3'5'H, that were isolated from Vitis vinifera 'Cabernet Sauvignon' using degenerate primers designed on plant homologous genes, translated into 313 and 239 amino acid protein fragments, respectively, with up to 76% and 82% identity to plant CYP75 cytochrome P450 monooxygenases. Putative function was assigned on the basis of sequence homology, expression profiling and its correlation with metabolite accumulation at ten different ripening stages. At the onset of colour transition, transcriptional induction of VvF3'H and VvF3'5'H was temporally coordinated with the beginning of anthocyanin biosynthesis, the expression being 2-fold and 50-fold higher, respectively, in red berries versus green berries. The peak of VvF3'5'H expression was observed two weeks later concomitantly with the increase of the ratio of delphinidin-/cyanidin-derivatives. The analysis of structural genomics revealed that two copies of VvF3'H are physically linked on linkage group no. 17 and several copies of VvF3'5'H are tightly clustered and embedded into a segmental duplication on linkage group no. 6, unveiling a high complexity when compared to other plant flavonoid hydroxylase genes known so far, mostly in ornamentals.
Conclusion: We have shown that genes encoding flavonoid 3'- and 3',5'-hydroxylases are expressed in any tissues of the grape plant that accumulate flavonoids and, particularly, in skin of ripening red berries that synthesise mostly anthocyanins. The correlation between transcript profiles and the kinetics of accumulation of red/cyanidin- and blue/delphinidin-based anthocyanins indicated that VvF3'H and VvF3'5'H expression is consistent with the chromatic evolution of ripening bunches. Local physical maps constructed around the VvF3'H and VvF3'5'H loci should help facilitate the identification of the regulatory elements of each isoform and the future manipulation of grapevine and wine colour through agronomical, environmental and biotechnological tools.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1403756 | PMC |
http://dx.doi.org/10.1186/1471-2164-7-12 | DOI Listing |
Foods
February 2024
College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030800, China.
Maintaining the vibrant color of fruit is a longstanding challenge in fruit and vegetable preservation. Chitosan and selenium, known for their protective and antioxidant properties, have been applied to preserve these produce. This study aimed to investigate the influence of selenium-chitosan treatment (comprising 25 mg L selenium and 1.
View Article and Find Full Text PDFPlant Physiol Biochem
February 2019
College of Enology, Northwest A & F University, Yangling Shaanxi 712100, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling Shaanxi 712100, China. Electronic address:
Anthocyanins contents and compositions play an important role in grape berries and wines. Grapevines are widely cultivated in arid and semi-arid areas, and water shortage restricts the development of wine industry. The aim of this work was to gain insight on the effect of regulated deficit irrigation (RDI) on the accumulation and biosynthesis of anthocyanins in Cabernet Sauvignon (Vitis Vinifera L.
View Article and Find Full Text PDFMolecules
September 2014
Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
Simple rain-shelter cultivation is normally applied during the grape growth season in continental monsoon climates aiming to reduce the occurrence of diseases caused by excessive rainfall. However, whether or not this cultivation practice affects the composition and concentration of phenolic compounds in wine grapes remains unclear. The objective of this study was to investigate the effect of rain-shelter cultivation on the accumulation of anthocyanins in wine grapes (Vitis vinifera L.
View Article and Find Full Text PDFBMC Genomics
January 2006
Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 208, 33100 Udine, Italy.
Background: Structural genes of the phenyl-propanoid pathway which encode flavonoid 3'- and 3',5'-hydroxylases (F3'H and F3'5'H) have long been invoked to explain the biosynthesis of cyanidin- and delphinidin-based anthocyanin pigments in the so-called red cultivars of grapevine. The relative proportion of the two types of anthocyanins is largely under genetic control and determines the colour variation among red/purple/blue berry grape varieties and their corresponding wines.
Results: Gene fragments of VvF3'H and VvF3'5'H, that were isolated from Vitis vinifera 'Cabernet Sauvignon' using degenerate primers designed on plant homologous genes, translated into 313 and 239 amino acid protein fragments, respectively, with up to 76% and 82% identity to plant CYP75 cytochrome P450 monooxygenases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!