Background: Recently, HEN1 protein from Arabidopsis thaliana was discovered as an essential enzyme in plant microRNA (miRNA) biogenesis. HEN1 transfers a methyl group from S-adenosylmethionine to the 2'-OH or 3'-OH group of the last nucleotide of miRNA/miRNA* duplexes produced by the nuclease Dicer. Previously it was found that HEN1 possesses a Rossmann-fold methyltransferase (RFM) domain and a long N-terminal extension including a putative double-stranded RNA-binding motif (DSRM). However, little is known about the details of the structure and the mechanism of action of this enzyme, and about its phylogenetic origin.

Results: Extensive database searches were carried out to identify orthologs and close paralogs of HEN1. Based on the multiple sequence alignment a phylogenetic tree of the HEN1 family was constructed. The fold-recognition approach was used to identify related methyltransferases with experimentally solved structures and to guide the homology modeling of the HEN1 catalytic domain. Additionally, we identified a La-like predicted RNA binding domain located C-terminally to the DSRM domain and a domain with a peptide prolyl cis/trans isomerase (PPIase) fold, but without the conserved PPIase active site, located N-terminally to the catalytic domain.

Conclusion: The bioinformatics analysis revealed that the catalytic domain of HEN1 is not closely related to any known RNA:2'-OH methyltransferases (e.g. to the RrmJ/fibrillarin superfamily), but rather to small-molecule methyltransferases. The structural model was used as a platform to identify the putative active site and substrate-binding residues of HEN and to propose its mechanism of action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1397878PMC
http://dx.doi.org/10.1186/1471-2148-6-6DOI Listing

Publication Analysis

Top Keywords

hen1
8
modeling hen1
8
plant microrna
8
mechanism action
8
catalytic domain
8
active site
8
domain
6
molecular phylogenetics
4
phylogenetics comparative
4
comparative modeling
4

Similar Publications

A combination of upstream alleles involved in rice heading hastens natural long-day responses.

Genes Genomics

November 2024

Department of Biosciences and Bioinformatics, Myongji University, 116 Myongji‑ro, Cheoin‑gu, Yongin, Gyeonggi‑do, 17058, Republic of Korea.

Background: The female parental line Jinbuol (JBO, early heading) and two recombinant isogenic lines, JSRIL1 and JSRIL2, have been shown to flower 44, 34 and 16 days earlier, respectively, than the male parental line Samgwang (SG, late heading) in paddy fields.

Objective: To explore how photoperiodicity-related genes are involved in differential heading among these lines.

Methods: Deep sequencing was conducted for these lines, photoperiodicity-related genes (71) were categorized, and qRT-PCR was performed for some key genes.

View Article and Find Full Text PDF

Functions and mechanisms of RNA tailing by nucleotidyl transferase proteins in plants.

Front Plant Sci

October 2024

Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Advanced Institute of Natural Sciences, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China.

The addition of non-templated nucleotides at the 3' terminus of RNA is a pervasive and evolutionarily conserved posttranscriptional modification in eukaryotes. Apart from canonical poly(A) polymerases (PAPs), which are responsible for catalyzing polyadenylation of messenger RNAs in the nucleus, a distinct group of non-canonical PAPs (ncPAPs), also known as nucleotidyl transferase proteins (NTPs), mediate the addition of uridine and adenosine or of more intricate combinations of nucleotides. Among these, HEN1 SUPPRESSOR 1 (HESO1) and UTP: RNA URIDYLYLTRANSFERASE (URT1) are the two most extensively studied NTPs responsible for the addition of uridine to the 3' ends of RNAs (RNA uridylation).

View Article and Find Full Text PDF

Poultry farming generates significant poultry litter (broiler litter and laying hen manure), posing environmental and human health risks. Heat treatment, particularly through drying, can mitigate these adverse effects. This paper aimed to explore the impact of various drying methods of poultry litter on key process indicators.

View Article and Find Full Text PDF

Mango is a popular tropical fruit that requires quarantine hot water treatment (QHWT) for postharvest sanitation, which can cause abiotic stress. Plants have various defense mechanisms to cope with stress; miRNAs mainly regulate the expression of these defense responses. Proteins involved in the biogenesis of miRNAs include DICER-like (DCL), ARGONAUTE (AGO), HYPONASTIC LEAVES 1 (HYL1), SERRATE (SE), HUA ENHANCER1 (HEN1), HASTY (HST), and HEAT-SHOCK PROTEIN 90 (HSP90), among others.

View Article and Find Full Text PDF

PBOX-sRNA-seq uncovers novel features of miRNA modification and identifies selected 5'-tRNA fragments bearing 2'-O-modification.

Nucleic Acids Res

August 2024

State Key Laboratory of Genetic Engineering, Zhangjiang mRNA Innovation and Translation Center, School of Life Sciences, Fudan University, Shanghai 200438, China.

The concomitant cloning of RNA degradation products is a major concern in standard small RNA-sequencing practices. This not only complicates the characterization of bona fide sRNAs but also hampers cross-batch experimental replicability and sometimes even results in library construction failure. Given that all types of plant canonical small RNAs possess the 3' end 2'-O-methylation modification, a new small RNA sequencing (sRNA-seq) method, designated as PBOX-sRNA-seq, has been developed specifically to capture this modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!