The incidence of isolated right ventricular (RV) failure is rare in postcardiotomy patients, but high in patients undergoing implantation of a left ventricular assist device or cardiac transplantation. Therefore, we have developed a new microaxial flow device and report on our first in vivo animal trials. Six healthy adult female sheep weighing 80-90 kg underwent implantation of the microaxial blood pump for partial unloading of the right ventricle. This pump is a miniaturized rotary blood pump with a diameter of only 6.4 mm and a weight of 11 g. The inner volume of the pump is limited to 12 mL, and the inner artificial blood contacting surface is 65 cm(2). The pump consists of a rotor driven by an incorporated brushless direct current motor, the housing of the rotor, the inflow cage, the outflow cannula, and the driveline. At the maximum speed of 32,500 rotations/min, a flow of 6 L/min can be delivered. The inflow and outflow conduit were anastomosed to the right atrium and the main pulmonary artery, respectively. Hemodynamic and echocardiographic data as well as blood samples were measured over the whole test period of 7 days. The hearts and lungs as well as the pump were explanted for a thorough examination at the end of the trial. Systemic arterial blood pressures remained unchanged during the entire test period. RV cardiac output was diminished significantly as demonstrated by the echocardiographic studies. The number of platelets decreased perioperatively, but recovered within the test period. The free hemoglobin was not enhanced postoperatively indicating no significant hemolysis. Liver function was only slightly impaired due to operative reasons (increase in bilirubin on the first postoperative day but normalization within the test period). The pathologic examination revealed some clots at the inflow cage and fibrin depositions on the impeller as well as on the inner surface of the outflow graft without an impairment of pump function. Our results demonstrate that this newly developed microaxial blood pump is a promising device for RV support, but it cannot be driven without any anticoagulation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1525-1594.2006.00187.xDOI Listing

Publication Analysis

Top Keywords

blood pump
16
test period
16
microaxial blood
12
pump
9
developed microaxial
8
inflow cage
8
blood
7
vivo experimental
4
experimental testing
4
microaxial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!