A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

15q duplication associated with autism in a multiplex family with a familial cryptic translocation t(14;15)(q11.2;q13.3) detected using array-CGH. | LitMetric

AI Article Synopsis

  • Autism spectrum disorders (ASDs) are linked to genetics, with about 1% of cases showing duplication in the 15q11-13 region.
  • The study presents a family with autism caused by a unique 15q gain resulting from an abnormal translocation rather than typical duplications.
  • Findings highlight the importance of further genetic testing in families to assess recurrence risks for autism, particularly focusing on specific chromosome regions.

Article Abstract

Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders with a strong genetic aetiology. In approximately 1% of cases, duplication of the 15q11-13 region has been reported. We report the clinical, array-comparative genomic hybridization (CGH) and cytogenetic evaluation of two individuals from a multiplex family demonstrating autism due to a maternally inherited gain of 15q11-13. Our findings indicate that unlike most 15q11-13 gains, which are caused by interstitial duplication of this region or supernumerary marker chromosomes deriving from proximal 15q, the 15q gain in this family is the result of abnormal segregation of a cryptic familial translocation with breakpoints at 14q11.2 and 15q13.3. The affected members of this family were found to have a normal karyotype at >550 band resolution. This translocation was identified using the 1-Mb resolution whole genome array (Spectral Genomics). The affected individuals have a gain of seven clones from proximal 15q, a loss of two clones from proximal 14q and a gain of two clones from 6q. Fluorescent in situ hybridization (FISH) analysis with clones from chromosomes 14 and 15, combined with DAPI reverse banding, showed an abnormal karyotype with one normal chromosome 15 and the der(15) t(14;15)(q11.2.;q13.3), resulting in the gain of proximal 15q and the loss of proximal 14q in affected individuals. The duplication of two clones from 6q in the affected subjects was also found in unaffected members of the family. Our findings suggest that the gain of 15q in autism may in some cases be due to cryptic translocations with breakpoints in the pericentromic regions of chromosome 15 and a different acrocentric chromosome. Variation in the size of pericentromic regions of any acrocentric chromosome may justify karyotype and FISH studies of autistic probands and their parents using probes from the 15q proximal region to determine recurrence risk for autism in some families.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1399-0004.2005.00560.xDOI Listing

Publication Analysis

Top Keywords

proximal 15q
12
multiplex family
8
members family
8
gain clones
8
clones proximal
8
15q loss
8
proximal 14q
8
pericentromic regions
8
acrocentric chromosome
8
15q
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!