AI Article Synopsis

  • The study focuses on how specific mutations in the protein ribonuclease A affect its stability and unfolding pathways, highlighting the role of a localized interaction between Tyr92 and Pro93.
  • By examining the effects of these mutations, the research shows that even small changes can lead to significant differences in protein dynamics and unfolding rates.
  • These findings have broader implications for understanding protein folding, predicting structure-function relationships, and identifying potential cleavage sites in proteins.

Article Abstract

Reductive unfolding studies of proteins are designed to provide information about intramolecular interactions that govern the formation (and stabilization) of the native state and about folding/unfolding pathways. By mutating Tyr92 to G, A, or L in the model protein, bovine pancreatic ribonuclease A, and through analysis of temperature factors and molecular dynamics simulations of the crystal structures of these mutants, it is demonstrated that the markedly different reductive unfolding rates and pathways of ribonuclease A and its structural homologue onconase can be attributed to a single, localized, ring-stacking interaction between Tyr92 and Pro93 in the bovine variant. The fortuitous location of this specific stabilizing interaction in a disulfide-bond-containing loop region of ribonuclease A results in the localized modulation of protein dynamics that, in turn, enhances the susceptibility of the disulfide bond to reduction leading to an alteration in the reductive unfolding behavior of the homologues. These results have important implications for folding studies involving topological determinants to obtain folding/unfolding rates and pathways, for protein structure-function prediction through fold recognition, and for predicting proteolytic cleavage sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2529162PMC
http://dx.doi.org/10.1021/ja055313eDOI Listing

Publication Analysis

Top Keywords

reductive unfolding
12
rates pathways
8
localized specific
4
specific interaction
4
interaction alters
4
unfolding
4
alters unfolding
4
pathways
4
unfolding pathways
4
pathways structural
4

Similar Publications

Can you have a cake and eat it? Comparing reducing mycophenolate versus switching to everolimus for kidney transplants with new-onset BKPyV-DNAemia.

Kidney Int

February 2025

Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel Switzerland. Electronic address:

BK polyomavirus remains a vexing issue in kidney transplantation. There are no antiviral drugs, and solely reducing immunosuppression is recommended for management. However, evidence from randomized controlled studies lacks defining clearance of BK polyomavirus-DNAemia and/or nephropathy as a primary outcome.

View Article and Find Full Text PDF

Reductive stress: The key pathway in metabolic disorders induced by overnutrition.

J Adv Res

January 2025

The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:

Background: The balance of redox states is crucial for maintaining physiological homeostasis. For decades, the focus has been mainly on the concept of oxidative stress, which is involved in the mechanism of almost all diseases. However, robust evidence has highlighted that reductive stress, the other side of the redox spectrum, plays a pivotal role in the development of various diseases, particularly those related to metabolism and cardiovascular health.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) play critical roles in tumorigenesis, cancer progression, and drug resistance. Persistent activation of the ER stress system enhances the survival capacities of malignant tumor cells, including increased proliferation, invasion, and resistance to treatment. Dysregulation of ER function and the resultant stress is a common cellular response to cancer therapies and may lead to cancer cell death.

View Article and Find Full Text PDF

Experimental study on the drag reduction performance of sodium alginate in saline solutions.

Sci Rep

December 2024

Institute for Sustainable Industries and Liveable Cities, Victoria University, Footscray Park Campus Ballarat Road, Footscray, Melbourne, 8001, Australia.

Since the discovery of the turbulence drag reduction phenomenon over 70 years ago, it has been recognized that the addition of small quantities of drag-reducing agents to fluids can significantly decrease wall shear stress, thereby enhancing fluid pumpability. In many applications, the fluids often contain salts, such as those used in fracturing processes within the petroleum sector. The aim of this study is to experimentally investigate the effects of salinity, flow rate, and polymer concentration on the drag reduction performance of sodium alginate in circular pipes.

View Article and Find Full Text PDF

Modulating the unfolded protein response with ISRIB mitigates cisplatin ototoxicity.

Sci Rep

September 2024

Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco (UCSF), 513 Parnassus Ave, Rm 719, San Francisco, CA, 94143, USA.

Cisplatin is a commonly used chemotherapy agent with a nearly universal side effect of sensorineural hearing loss. The cellular mechanisms underlying cisplatin ototoxicity are poorly understood. Efforts in drug development to prevent or reverse cisplatin ototoxicity have largely focused on pathways of oxidative stress and apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!