P140K-MGMT and G156A-MGMT genes encode two O(6)-benzylguanine-resistant O(6)-alkylguanine DNA alkyltransferase proteins that confer a high degree of O(6)-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or O(6)-benzylguanine and temozolomide resistance to primary hematopoietic cells. In this study, we directly compared these and three other O(6)-benzylguanine-resistant MGMT genes for their ability to protect the human erythroleukemia cell line, K562, using a direct competitive selection strategy to identify the mutation that conferred the greatest degree of protection from O(6)-benzylguanine and either BCNU or temozolomide. MFG retroviral vector plasmids for each of these mutants [G156A-MGMT (ED(50) for O(6)-benzylguanine, 60 micromol/L); and P140K-MGMT, MGMT-2 (S152H, A154G, Y158H, G160S, L162V), MGMT-3 (C150Y, A154G, Y158F, L162P, K165R), and MGMT-5 (N157T, Y158H, A170S; ED(50) for benzylguanine, >1,000 micromol/L)] were mixed, and the virus produced from Phoenix cells was transduced into K562 cells. Stringent selection used high doses of O(6)-benzylguanine (800 micromol/L) and temozolomide (1,000 micromol/L) or BCNU (20 micromol/L) administered twice, and following regrowth, surviving clones were isolated, and the MGMT transgene was sequenced. None of the mutants was lost during selection. Using temozolomide, the enrichment factor was greatest for P140K-MGMT (1.7-fold). Using BCNU selection, the greatest enrichment was observed with MGMT-2 (1.5-fold). G156A-MGMT, which is the least O(6)-benzylguanine-resistant MGMT gene of the mutants tested, was not lost during selection but was selected against. The optimal mutant MGMT useful as a drug resistance gene may depend on whether a methylating or chloroethylating agent is used for drug selection.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-05-0236DOI Listing

Publication Analysis

Top Keywords

o6-alkylguanine dna
8
hematopoietic cells
8
o6-benzylguanine-resistant mgmt
8
lost selection
8
selection
6
o6-benzylguanine
5
differential competitive
4
competitive resistance
4
resistance methylating
4
methylating versus
4

Similar Publications

Bracken Fern Carcinogen, Ptaquiloside, Forms a Guanine -Adduct in DNA.

J Agric Food Chem

January 2025

Centre for Chemical Biology, Department of Chemistry, Institute for Nucleic Acids, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.

Bracken fern ( sp.) is a viable and vigorous plant with invasive potential, ingestion of which causes chronic illness and cancers in farm animals. Bracken is a suspected human carcinogen, and exposure can result from ingestion of bracken-contaminated water, dairy products, or meat derived from livestock grazing on bracken fern.

View Article and Find Full Text PDF

The DNA Alkyltransferase Family of DNA Repair Proteins: Common Mechanisms, Diverse Functions.

Int J Mol Sci

December 2023

School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.

DNA alkyltransferase and alkyltransferase-like family proteins are responsible for the repair of highly mutagenic and cytotoxic O-alkylguanine and O-alkylthymine bases in DNA. Their mechanism involves binding to the damaged DNA and flipping the base out of the DNA helix into the active site pocket in the protein. Alkyltransferases then directly and irreversibly transfer the alkyl group from the base to the active site cysteine residue.

View Article and Find Full Text PDF

Methyl damage to DNA bases is common in the cell nucleus. O6-alkylguanine-DNA alkyl transferase (AGT) may be a promising candidate for direct damage reversal in methylated DNA (mDNA) at the O6 point of the guanine. Indeed, atomic-level investigations in the contact region of AGT-DNA complex can provide an in-depth understanding of their binding mechanism, allowing to evaluate the silico-drug nature of AGT and its utility in removing methyl damage in DNA.

View Article and Find Full Text PDF

Unraveling key interactions and the mechanism of demethylation during hAGT-mediated DNA repair simulations.

Front Mol Biosci

September 2022

Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Delhi-NCR, Uttar Pradesh, India.

Alkylating agents pose the biggest threat to the genomic integrity of cells by damaging DNA bases through regular alkylation. Such damages are repaired by several automated types of machinery inside the cell. O6-alkylguanine-DNA alkyltransferase (AGT) is an enzyme that performs the direct repair of an alkylated guanine base by transferring the alkyl group to a cysteine residue.

View Article and Find Full Text PDF

The Potential of Antibody Technology and Silver Nanoparticles for Enhancing Photodynamic Therapy for Melanoma.

Biomedicines

September 2022

Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 55 Beit Street, Doornfontein, Johannesburg 2028, South Africa.

Melanoma is highly aggressive and is known to be efficient at resisting drug-induced apoptotic signals. Resection is currently the gold standard for melanoma management, but it only offers local control of the early stage of the disease. Metastatic melanoma is prone to recurrence, and has a poor prognosis and treatment response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!