The cytoplasmic domain of the F protein of Human respiratory syncytial virus is not required for cell fusion.

J Gen Virol

Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA.

Published: February 2006

The cytoplasmic domains of the fusion proteins encoded by several viruses play a role in cell fusion and contain sites for palmitoylation associated with viral protein trafficking and virus assembly. The fusion (F) protein of Human respiratory syncytial virus (HRSV) has a predicted cytoplasmic domain of 26 residues containing a single palmitoylated cysteine residue that is conserved in bovine RSV F protein, but not in the F proteins of other pneumoviruses such as pneumonia virus of mice, human metapneumovirus and avian pneumovirus. The cytoplasmic domains in other paramyxovirus fusion proteins such as Newcastle disease virus F protein play a role in fusion. In this study, it was shown that deletion of the entire cytoplasmic domain or mutation of the single cysteine residue (C550S) of the HRSV F protein had no effect on protein processing, cell-surface expression or fusion.

Download full-text PDF

Source
http://dx.doi.org/10.1099/vir.0.81481-0DOI Listing

Publication Analysis

Top Keywords

cytoplasmic domain
12
protein human
8
human respiratory
8
respiratory syncytial
8
syncytial virus
8
cell fusion
8
cytoplasmic domains
8
fusion proteins
8
play role
8
cysteine residue
8

Similar Publications

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

Pathogenic variants in , encoding dynamin-like protein-1 (DRP1), cause a lethal encephalopathy. DRP1 defective function results in altered mitochondrial networks, characterized by elongated/spaghetti-like, highly interconnected mitochondria. We validated in yeast the pathogenicity of a de novo variant identified by whole exome sequencing performed more than 10 years after the patient's death.

View Article and Find Full Text PDF

Genome-Wide Identification and Expression Profile of () Gene Family in L.

Int J Mol Sci

January 2025

State Key Laboratory of Tropical Crop Breeding, Sanya Institute, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China.

The biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are essential for sesquiterpenes and triterpenes, respectively, is primarily governed by the mevalonate pathway, wherein () plays a pivotal role. This study identified eight members of the FPS gene family in , designated -, through bioinformatics analysis, revealing their distribution across several chromosomes and a notable tandem gene cluster. The genes exhibited strong hydrophilic properties and key functional motifs crucial for enzyme activity.

View Article and Find Full Text PDF

The oncogenes yes-associated protein () and transcriptional coactivator with PDZ-binding motif () are potent liver oncogenes. Because gene mutations cannot fully explain their nuclear enrichment, we aim to understand which mechanisms cause activation in liver cancer cells. The combination of proteomics and functional screening identified numerous apical cell polarity complex proteins interacting with YAP and TAZ.

View Article and Find Full Text PDF

Multiprotein bridging factor 1 (MBF1) is a transcription factor family playing crucial roles in plant development and stress responses. In this study, we analyzed MBF1 genes in and under abiotic stresses, revealing evolutionary patterns and functional differences. Four genes were identified in and two in , with conserved MBF1 and HTH domains, similar exon/intron structures, and stress-related -elements in their promoters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!