The present work is related to the characterization of air-saturated porous media by using parametric demodulated ultrasonic waves. One uses two different powerful ultrasonic emitters working either at 47 kHz or at 162 kHz which are electronically amplitude modulated over the 200 Hz-4 kHz or 2 kHz-40 kHz bandwidths respectively. The demodulation process takes place in air, due to its nonlinearity enabling to generate audio range acoustical waves or alternatively low frequency ultrasonic waves which can be used to characterize porous materials in the reflection configuration at normal incidence. Some appropriate theoretical calculations are introduced for three configurations of interest, i.e. a porous slab, a porous layer mounted onto a rigid plate, and a porous half space, in the case of the equivalent-fluid model. Comparisons between theoretical modeling and experimental data are provided and prospective industrial applications are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2005.11.004DOI Listing

Publication Analysis

Top Keywords

ultrasonic waves
12
normal incidence
8
air-saturated porous
8
porous materials
8
parametric demodulated
8
demodulated ultrasonic
8
porous
6
reflection transmission
4
transmission normal
4
incidence air-saturated
4

Similar Publications

Although low-intensity focused ultrasound (LiFUS) with microbubbles is used to temporally open the blood-brain barrier (BBB), the underlying mechanism is not fully understood. This study aimed to analyze BBB-related alterations in the brain microenvironment after LiFUS, with a focus on the involvement of the purinergic P ×  receptor. Sprague-Dawley rats were sonicated with LiFUS at 0.

View Article and Find Full Text PDF

Non-invasive, low intensity focused ultrasound is an emerging neuromodulation technique that offers the potential for precision, personalized therapy. An increasing body of research has identified mechanosensitive ion channels that can be modulated by FUS and support acute electrical activity in neurons. However, neuromodulatory effects that persist from hours to days have also been reported.

View Article and Find Full Text PDF

In this work, cerium dioxide nanostructures were synthesized in an easy sonochemical way. CeO nanoparticles have received much attention in nanotechnology. CeONPs, exhibit biomimetic properties depending on their size, ratio of valency on their surface, and the ambient physico-chemical properties.

View Article and Find Full Text PDF

Ultrasonic sensors based on backscattering principles have been developed for various applications involving arbitrary or random scatterer distributions. Although the theory of multiple scattering of waves is well-established, it has not been thoroughly explored in these applications. This work presents a feasible and simplified three-dimensional scattering model to predict the transient response generated by a set of rods positioned in the near field of a 1 MHz water-coupled ultrasonic transducer.

View Article and Find Full Text PDF

Recently, Organ-on-a-Chip (OoC) platforms have arisen as an increasingly relevant experimental tool for successfully replicating human physiology and disease. However, there is a lack of a standard technology to monitor the OoC parameters, especially in a non-invasive and label-free way. Photoacoustic (PA) systems can be considered an alternative and accurate assessment method for OoC platforms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!