A new homology model of type-3A serotonin receptors (5-HT(3A)Rs) was built on the basis of the electron microscopic structure of the nicotinic acetylcholine receptor and with an agonist-free binding cavity. The new model was used to re-evaluate the interactions of granisetron, a 5-HT(3A)R antagonist. Docking of granisetron identified two possible binding modes, including a newly identified region for antagonists formed by loop B, C, and E residues. Amino acid residues L184-D189 in loop B were mutated to alanine, while Y143 and Y153 in loop E were mutated to phenylalanine. Mutation H185A resulted in no detectable granisetron binding, while D189A resulted in a 22-fold reduction in affinity. Y143F and Y153F decreased granisetron affinity to the same extent as Y143A and Y153A mutations, supporting the role of the OH groups of these tyrosines in loop E. Modeling and mutation studies suggest that granisetron plays its antagonist role by hindering the closure of the back wall of the binding cavity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi051676f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!