Studies cited by Cowan et al. [J. Appl. Toxicol. 23, 177 (2003)] indicate existence of inflammatory and cholinergic pathways in both nerve agents and sulfur mustard (HD) injury. Increase in AChE synthesis and neurite extension was noted after exposure to HD [K.W. Lanks et al., Exp. Cell Res. 355 (1975)]. Moreover, anti-inflammatory drugs reduce the dermal, respiratory and ocular damage caused by exposure to HD. On the other hand, recent studies have noted the involvement of neuro-inflammatory processes during exposure to the nerve agents sarin or soman [Cowan et al., 2003]. The use of various anti-inflammatory drugs in addition to the classical antidotal drugs (e.g. atropine and oximes) caused decrease in certain toxic symptoms and inflammation-induced brain damage. Our new bifunctional drugs (Scheme 1) are based on CNS-permeable molecular combination of pseudo-reversible AChE inhibitor (pyridostigmine, PYR) coupled via a hydrophobic spacer (octyl or decyl hydrocarbon chain) to a non-steroidal anti-inflammatory drug (NSAID) such as Ibuprofen or Diclofenac (Scheme 1). This study evaluates the efficacy of certain bifunctional compounds against HD and soman poisoning in mice in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbi.2005.10.050 | DOI Listing |
Mol Biol Rep
January 2025
Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.
View Article and Find Full Text PDFNephrol Dial Transplant
January 2025
Clinica Medica, University Milano-Bicocca and University of Milano-Bicocca, Milan, Italy.
The autonomic nervous system plays a crucial role in regulating physiological processes and maintaining homeostasis through its two branches: the sympathetic nervous system (SNS) and the parasympathetic nervous system. Dysregulation of the autonomic system, characterized by increased sympathetic activity and reduced parasympathetic tone, is a common feature in chronic kidney disease (CKD) and cardiovascular disease. This imbalance contributes to a pro-inflammatory state, exacerbating disease progression and increasing the risk for cardiovascular events.
View Article and Find Full Text PDFBiomater Sci
January 2025
Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
Schwann cells (SCs) can potentially transform into the repair-related cell phenotype after injury, which can promote nerve repair. Ferroptosis occurs in the SCs of injured tissues, causing damage to the SCs and exacerbating nerve injury. Targeting ferroptosis in SCs is a promising therapeutic strategy for effective repair; however, research on ferroptosis in the peripheral nervous system remains limited.
View Article and Find Full Text PDFMed Oral Patol Oral Cir Bucal
January 2025
Department of Oral and Maxillofacial Surgery and Traumatology University of Pernambuco. Av. Gov. Agamenon Magalhães Santo Amaro, Recife - PE, CEP 50100-010, Brazil
Background: Sensory disorders of the inferior alveolar nerve, often arising from dental procedures, markedly impact the quality of life of patients. This article proposes a scoping review to analyze emerging trends in pharmacological treatment for these disorders, addressing scientific gaps and clinical practices.
Material And Methods: The review followed the PRISMA-ScR protocol, conducting data searches across various databases, including PubMed and Cochrane, until March 2024.
Langmuir
January 2025
Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K. C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States.
Poisoning by organophosphate (OP) nerve agents remains a pressing global threat due to their extensive use in chemical warfare agents and pesticides, potentially causing high morbidity and mortality worldwide. This urgent need for effective countermeasures has driven considerable interest in innovative detoxification approaches. Among these, nanoparticle technology stands out for its multifunctional potential and wide-ranging applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!