Mutational inactivation of the cold-shock-associated exoribonuclease polynucleotide phosphorylase (PNPase; encoded by the pnp gene) in Salmonella enterica serovar Typhimurium was previously shown to enable the bacteria to cause chronic infection and to affect the bacterial replication in BALB/c mice (M. O. Clements et al., Proc. Natl. Acad. Sci. USA 99:8784-8789, 2002). Here, we report that PNPase deficiency results in increased expression of Salmonella plasmid virulence (spv) genes under in vitro growth conditions that allow induction of spv expression. Furthermore, whole-genome microarray-based transcriptome analyses of bacteria growing inside murine macrophage-like J774.A.1 cells revealed six genes as being significantly up-regulated in the PNPase-deficient background, which included spvABC, rtcB, entC, and STM2236. Mutational inactivation of the spvR regulator diminished the increased expression of spv observed in the pnp mutant background, implying that PNPase acts upstream of or at the level of SpvR. Finally, competition experiments revealed that the growth advantage of the pnp mutant in BALB/c mice was dependent on spvR as well. Combined, our results support the idea that in S. enterica PNPase, apart from being a regulator of the cold shock response, also functions in tuning the expression of virulence genes and bacterial fitness during infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360324 | PMC |
http://dx.doi.org/10.1128/IAI.74.2.1243-1254.2006 | DOI Listing |
Pathol Res Pract
December 2024
Grupo de Medicina Molecular y Mitocondrial, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, C/Quevedo 2, Valencia 46001, Spain.
Liver cancer, particularly hepatocellular carcinoma (HCC), is a major global health challenge, largely associated with cirrhosis caused by various factors. Prognosis is often guided by molecular and histological classifications. In this study, expression of Polyribonucleotide Phosphorylase (PNPT1) in HCC was investigated to better understand its role in tumor behavior and patient outcomes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712.
Cell Commun Signal
September 2024
IDR/WSLHD Research and Education Network, Sydney, NSW, 2145, Australia.
Mitochondrial activity directs neuronal differentiation dynamics during brain development. In this context, the long-established metabolic coupling of mitochondria and the eukaryotic host falls short of a satisfactory mechanistic explanation, hinting at an undisclosed facet of mitochondrial function. Here, we reveal an RNA-based inter-organellar communication mode that complements metabolic coupling of host-mitochondria and underpins neuronal differentiation.
View Article and Find Full Text PDFMol Metab
November 2024
General Surgery Department, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin 150086, Heilongjiang Province, China. Electronic address:
Objective: Metabolic-associated fatty liver disease (MAFLD) represents one of the most prevalent chronic liver conditions worldwide, but its precise pathogenesis remains unclear. This research endeavors to elucidate the involvement and molecular mechanisms of polyribonucleotide nucleotidyltransferase 1 (PNPT1) in the progression of MAFLD.
Methods: The study employed western blot and qRT-PCR to evaluate PNPT1 levels in liver specimens from individuals diagnosed with MAFLD and in mouse models subjected to a high-fat diet.
Mol Cell
August 2024
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Graduate School of Engineering Biology, KAIST, Daejeon 34141, Republic of Korea; KAIST Institute for BioCentury, KAIST, Daejeon 34141, Republic of Korea; KAIST Institute for Health Science and Technology (KIHST), KAIST, Daejeon 34141, Republic of Korea. Electronic address:
Mitochondria are essential regulators of innate immunity. They generate long mitochondrial double-stranded RNAs (mt-dsRNAs) and release them into the cytosol to trigger an immune response under pathological stress conditions. Yet the regulation of these self-immunogenic RNAs remains largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!