A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rrp5p, a trans-acting factor in yeast ribosome biogenesis, is an RNA-binding protein with a pronounced preference for U-rich sequences. | LitMetric

Rrp5p, a trans-acting factor in yeast ribosome biogenesis, is an RNA-binding protein with a pronounced preference for U-rich sequences.

RNA

Section of Biochemistry and Molecular Biology, FEW, Vrije Universiteit, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.

Published: February 2006

Rrp5p is a trans-acting factor important for biogenesis of both the 40S and 60S subunit of the Saccharomyces cerevisiae ribosome. The protein contains 12 tandemly repeated S1 RNA binding motifs in its N-terminal region, suggesting the ability to interact directly with the pre-rRNA. In vitro binding studies, using immunopurified Rrp5p and in vitro transcribed, 32P-UTP-labeled RNA fragments, revealed that Rrp5p is a general RNA-binding protein with a strong preference for single-stranded sequences rich in uridines. Co-immunoprecipitation studies in yeast cells expressing ProtA-tagged Rrp5p showed that the protein is still associated with pre-ribosomal particles containing 27SA2 pre-rRNA but not with particles containing the 27SB precursor. Thus, Rrp5p appears to dissociate from the 66S pre-ribosome upon or immediately after further processing of 27SA2 pre-rRNA, suggesting the presence of (an) important binding site(s) within the 3'-terminal portion of ITS1. The location of these possible binding site(s) was further delimited using rrp2-1 mutant cells, which accumulate the 5'-extended 5.8S pre-rRNA species. The results indicate that association of Rrp5p with the pre-ribosome is abolished upon removal of a 30-nt region downstream from site A2, which contains two short, single-stranded U stretches. Sequence comparison shows that only the most 5' of these two U-rich stretches is conserved among yeast species whose ITS1 can functionally replace the S. cerevisiae spacer. The implications for the role of Rrp5p in yeast ribosome biogenesis are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1370906PMC
http://dx.doi.org/10.1261/rna.2257606DOI Listing

Publication Analysis

Top Keywords

rrp5p
8
rrp5p trans-acting
8
trans-acting factor
8
yeast ribosome
8
ribosome biogenesis
8
rna-binding protein
8
27sa2 pre-rrna
8
binding sites
8
yeast
4
factor yeast
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!