Purpose: Mutations in mononucleotide repeat sequence (MRS) are good indicators of high-frequency microsatellite instability (MSI-H) cancers, but it has been a challenge to detect such mutations in a large background of wild-type DNA; as in this setting, PCR errors often generate false positive mutant alleles. In this study, we developed a general strategy, referred to as probe clamping primer extension-PCR (PCPE-PCR), to detect MRS alterations in a large background of wild-type DNA.

Experimental Design: In PCPE-PCR, genomic DNA is first subjected to PCPE, in which mutant single-strand DNA molecules are preferentially produced. Next, genomic DNA is removed to enrich for the mutant DNA fraction. Thereafter, PCR is carried out using the remaining single-strand DNA molecules as templates. Finally, the PCR products are analyzed to reveal the MSI-H status. In this study, the sensitivity of this new method was first examined by spiking mutant DNA into wild-type DNA at specific ratios followed by studying whether this method is applicable to fecal DNA testing.

Results: We showed that PCPE-PCR could detect both mutated BAT26 and transforming growth factor-beta-RII (A)10 markers in the presence of 500-fold excess of normal DNA and that as few as three copies of mutated DNA could be detected. In addition, we showed that this technology could detect MSI-H colorectal cancer by fecal DNA analysis.

Conclusion: PCPE-PCR is sensitive. In addition, PCPE-PCR is simple and amendable to a cost-effective and high-throughput screening operation. This technology may be applicable to noninvasive screening of MSI-H cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-05-0919DOI Listing

Publication Analysis

Top Keywords

dna
13
large background
12
mononucleotide repeat
8
repeat sequence
8
alterations large
8
normal dna
8
high-frequency microsatellite
8
microsatellite instability
8
background wild-type
8
wild-type dna
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!