The leucine zipper family transcription factor CCAAT enhancer binding protein alpha (C/EBPalpha) inhibits proliferation and promotes differentiation in various cell types. In this study, we show, using a lung-specific conditional mouse model of C/EBPalpha deletion, that loss of C/EBPalpha in the respiratory epithelium leads to respiratory failure at birth due to an arrest in the type II alveolar cell differentiation program. This differentiation arrest results in the lack of type I alveolar cells and differentiated surfactant-secreting type II alveolar cells. In addition to showing a block in type II cell differentiation, the neonatal lungs display increased numbers of proliferating cells and decreased numbers of apoptotic cells, leading to epithelial expansion and loss of airspace. Consistent with the phenotype observed, genes associated with alveolar maturation, survival, and proliferation were differentially expressed. Taken together, these results identify C/EBPalpha as a master regulator of airway epithelial maturation and suggest that the loss of C/EBPalpha could also be an important event in the multistep process of lung tumorigenesis. Furthermore, this study indicates that exploring the C/EBPalpha pathway might have therapeutic benefits for patients with respiratory distress syndromes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1347037PMC
http://dx.doi.org/10.1128/MCB.26.3.1109-1123.2006DOI Listing

Publication Analysis

Top Keywords

alveolar cells
12
type alveolar
12
respiratory failure
8
differentiation arrest
8
transcription factor
8
loss c/ebpalpha
8
cell differentiation
8
c/ebpalpha
7
differentiation
5
alveolar
5

Similar Publications

Introduction: Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease characterized by a lack of effective therapies. Mesenchymal stem cells (MSCs) have garnered significant interest in the realm of lung regeneration due to their abundant availability, ease of isolation, and capacity for expansion. The objective of our study was to investigate the potential therapeutic role of umbilical cord-derived MSCs (UC-MSCs) in the management of PF, with a focus on the alterations in the gut microbiota and its metabolites during the use of UC-MSCs for the treatment of pulmonary fibrosis, as well as the possible mechanisms involved.

View Article and Find Full Text PDF

Background: Pulmonary ischemia-reperfusion injury (PIRI) is a major cause of fatality post-lung transplantation. Though some long non-coding RNAs (lncRNAs) have been studied in acute lung injury (ALI), their effects on PIRI remain undefined. The present study aims to explore the underlying mechanism of small nucleolar RNA host gene 16 (SNHG16) in PIRI.

View Article and Find Full Text PDF

Advances on the Role of Lung Macrophages in the Pathogenesis of Chronic Obstructive Pulmonary Disease in the Era of Single-Cell Genomics.

Int J Med Sci

January 2025

Department of Respiratory and Critical Medicine, the Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518000, Guangdong Province, China.

Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous respiratory disorder characterized by persistent airflow limitation. The diverse pathogenic mechanisms underlying COPD progression remain incompletely understood. Macrophages, serving as the most representative immune cells in the respiratory tract, constitute the first line of innate immune defense and maintain pulmonary immunological homeostasis.

View Article and Find Full Text PDF

Peribronchiolar metaplasia is an uncommon lesion characterized by fibrosis and bronchiolar epithelial cell proliferation along the peribronchiolar alveolar walls, primarily in response to bronchiolar and peribronchiolar injuries. Peribronchiolar metaplasia usually appears as ground glass nodules or sub-solid nodules on computed tomography. However, we present an exceptional case of peribronchiolar metaplasia that appeared as a solitary solid nodule on computed tomography.

View Article and Find Full Text PDF

Sialoadhesin-dependent susceptibility and replication of porcine reproductive and respiratory syndrome viruses in CD163-expressing cells.

Front Vet Sci

December 2024

Viral Diseases Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea.

Understanding the molecular interactions between porcine reproductive and respiratory syndrome viruses (PRRSVs) and host cells is crucial for developing effective strategies against PRRSV. CD163, predominantly expressed in porcine macrophages and monocytes, is a key receptor for PRRSV infection. CD169, also known as Sialoadhesin, has emerged as a potential receptor facilitating PRRSV internalization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!