Human thrombin utilizes Na+ as a driving force for the cleavage of substrates mediating its procoagulant, prothrombotic, and signaling functions. Murine thrombin has Asp-222 in the Na+ binding site of the human enzyme replaced by Lys. The charge reversal substitution abrogates Na+ activation, which is partially restored with the K222D mutation, and ensures high activity even in the absence of Na+. This property makes the murine enzyme more resistant to the effect of mutations that destabilize Na+ binding and shift thrombin to its anticoagulant slow form. Compared with the human enzyme, murine thrombin cleaves fibrinogen and protein C with similar k(cat)/K(m) values but activates PAR1 and PAR4 with k(cat)/K(m) values 4- and 26-fold higher, respectively. The significantly higher specificity constant toward PAR4 accounts for the dominant role of this receptor in platelet activation in the mouse. Murine thrombin can also cleave substrates carrying Phe at P1, which potentially broadens the repertoire of molecular targets available to the enzyme in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M512082200 | DOI Listing |
Blood
January 2025
Cleveland Clinic, Cleveland, Ohio, United States.
Antibodies to β2-glycoprotein I (β2GPI) cause thrombosis in antiphospholipid syndrome, however the role of β2GPI in coagulation in vivo is not understood. To address this issue, we developed β2GPI-deficient mice (Apoh-/-) by deleting exon 2 and 3 of Apoh using CRISPR/Cas9 and compared the development of thrombosis in wild-type (WT) and Apoh-/- mice using rose bengal and FeCl3-induced carotid thrombosis, laser-induced cremaster arteriolar injury, and inferior vena cava (IVC) stasis models. We also compared tail bleeding times and activation of platelets from WT and Apoh-/- mice in the absence and presence of β2GPI.
View Article and Find Full Text PDFJ Clin Exp Hepatol
December 2024
Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.
Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.
Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.
Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.
J Pharmacol Sci
February 2025
Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan.
The purpose of the present study is to investigate changes in the kynurenine pathway after intracerebral hemorrhage (ICH) and its effects on ICH-induced injury. The exposure of a primary rat microglial culture to thrombin increased the mRNA level of kynurenine 3-monooxygenase (KMO), and this increase was attenuated by a p38 MAPK inhibitor. Thrombin also increased the protein level of KMO.
View Article and Find Full Text PDFJCI Insight
January 2025
Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States of America.
Thrombin promotes the proliferation and function of CD8+ T cells. To test if thrombin prevents exhaustion and sustains antiviral T cell activity during chronic viral infection, we depleted the thrombin-precursor prothrombin to 10% of normal levels in mice prior to infection with the clone 13 strain of lymphocytic choriomeningitis virus. Unexpectedly, prothrombin insufficiency resulted in 100% mortality after infection that was prevented by depletion of CD8+ T cells, suggesting that reduced availability of prothrombin enhances virus-induced immunopathology.
View Article and Find Full Text PDFBlood Adv
January 2025
The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Cytoskeletal remodeling and mitochondrial bioenergetics play important roles in thrombocytopoiesis and platelet function. Recently, α-actinin-1 mutations have been reported in patients with congenital macrothrombocytopenia. However, the role and underlying mechanism of α-actinin-1 in thrombocytopoiesis and platelet function remain elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!