Small protein B, SmpB, is a tmRNA-specific binding protein essential for trans-translation. We examined the interaction between SmpB and tmRNA from Thermus thermophilus, using biochemical and NMR methods. Chemical footprinting analyses using full-length tmRNA demonstrated that the sites protected upon SmpB binding are located exclusively in the tRNA-like domain (TLD) of tmRNA. To clarify the SmpB binding sites, we constructed several segments derived from TLD. Optical biosensor interaction analyses and melting profile analyses with mutational studies showed that SmpB efficiently binds to only a 30-nt segment that forms a stem and loop, with the 5' and 3' extensions composed of the D-loop and variable-loop analogues. The conserved sequences, 16UCGA and 319GAC, in the extensions are responsible for the SmpB binding. These results agree with the those visualized by the cocrystal structure of TLD and SmpB from Aquifex aeolicus. In addition, NMR chemical shift mapping analyses, using the 30-nt segment and (15)N-labeled SmpB, revealed the characteristic RNA binding mode. The hydrogen bond pattern around beta2 changes, with the Gly in beta2, which acts as a hinge, showing the largest chemical shift change. It appears that SmpB undergoes structural changes indicating an induced fit upon binding to the specific region of TLD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jb/mvi180 | DOI Listing |
Nucleic Acids Res
August 2024
Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden.
Ribosomes trapped on mRNAs during protein synthesis need to be rescued for the cell to survive. The most ubiquitous bacterial ribosome rescue pathway is trans-translation mediated by tmRNA and SmpB. Genetic inactivation of trans-translation can be lethal, unless ribosomes are rescued by ArfA or ArfB alternative rescue factors or the ribosome-associated quality control (RQC) system, which in Bacillus subtilis involves MutS2, RqcH, RqcP and Pth.
View Article and Find Full Text PDFElife
May 2024
National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States.
A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote iled-il clease andems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes.
View Article and Find Full Text PDFFront Microbiol
March 2024
RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, United States.
Ribosomes stall on truncated or otherwise damaged mRNAs. Bacteria rely on ribosome rescue mechanisms to replenish the pool of ribosomes available for translation. Trans-translation, the main ribosome-rescue pathway, uses a circular hybrid transfer-messenger RNA (tmRNA) to restart translation and label the resulting peptide for degradation.
View Article and Find Full Text PDFbioRxiv
February 2024
National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote CoCoNuTs (coiled-coil nuclease tandems) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with 3 distinct types and multiple subtypes.
View Article and Find Full Text PDFmBio
October 2023
Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania, USA.
Elongation factor thermo-unstable (EF-Tu) is a universally conserved translation factor that mediates productive interactions between tRNAs and the ribosome. In bacteria, EF-Tu also delivers transfer-messenger RNA (tmRNA)-SmpB to the ribosome during -translation. We report the first small molecule, KKL-55, that specifically inhibits EF-Tu activity in -translation without affecting its activity in normal translation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!