Dilinoleoyl-phosphatidylethanolamine from Hericium erinaceum protects against ER stress-dependent Neuro2a cell death via protein kinase C pathway.

J Nutr Biochem

Department of Epigenetic Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan.

Published: August 2006

In many types of neurodegeneration, neuronal cell death is induced by endoplasmic reticulum (ER) stress. Hence, natural products able to reduce ER stress are candidates for use in the attenuation of neuronal cell death and, hence, in the reduction of the damage, which occurs in neurodegenerative disease. In this study, we investigated ER stress-reducing natural products from an edible mushroom, Hericium erinaceum. As a result of screening by cell viability assay on the protein glycosylation inhibitor tunicamycin-induced (i.e., ER stress-dependent) cell death, we found that dilinoleoyl-phosphatidylethanolamine (DLPE) was one of the molecules effective at reducing ER stress-dependent cell death in the mouse neuroblastoma cell line Neuro2a cells. A purified DLPE, commercially available, also exhibited a reducing effect on this ER stress-dependent cell death. Therefore, we concluded that DLPE has potential as a protective molecule in ER stress-induced cell death. From the structure of DLPE, it was hypothesized that it might activate protein kinase C (PKC). The activity of PKC-epsilon, a novel-type PKC, was increased by adding DLPE, and PKC-gamma, a conventional-type PKC, was activated on the coaddition of diolein and DLPE, as shown by in vitro enzyme activity analysis. The protecting activity of DLPE was attenuated in the presence of a PKC inhibitor GF109203X but not completely diminished. Therefore, DLPE can protect neuronal cells from ER stress-induced cell death, at least in part by the PKC pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jnutbio.2005.09.007DOI Listing

Publication Analysis

Top Keywords

cell death
32
stress-dependent cell
12
cell
10
hericium erinaceum
8
death
8
protein kinase
8
neuronal cell
8
natural products
8
dlpe
8
reducing stress-dependent
8

Similar Publications

Immune infiltration plays a significant role in the pathogenesis of rheumatoid arthritis (RA). Cuproptosis, a newly characterized form of programmed cell death, remains insufficiently investigated regarding its genetic regulation of immune infiltration in RA. Data from the GEO database were analyzed to determine the relationship between cuproptosis-related genes and immune infiltration.

View Article and Find Full Text PDF

New insights into constitutive neutrophil death.

Cell Death Discov

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Tianjin, 300020, China.

Neutrophils undergo rapid aging and death known as constitutive or spontaneous death. Constitutive neutrophil death (CND) contributes to neutrophil homeostasis and inflammation resolution. CND has long been considered to be apoptotic until our findings reveal that it was a heterogeneous combination of diverse death.

View Article and Find Full Text PDF

Developing novel Lin28 inhibitors by computer aided drug design.

Cell Death Discov

January 2025

The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.

Lin28 is a key regulator of cancer stem cell gene network that promotes therapy-resistant tumor progression in various tumors. However, no Lin28 inhibitor has been approved to treat cancer patients, urging exploration of novel compounds as candidates to be tested for clinical trials. In this contribution, we applied computer-aided drug design (CADD) in combination with quantitative biochemical and biological assays.

View Article and Find Full Text PDF

DNA methylation of ACADS promotes immunogenic cell death in hepatocellular carcinoma.

Cell Biosci

January 2025

Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.

Background: Altered metabolism has become an important characteristic of cancer, and acyl-CoA dehydrogenase short-chain (ACADS), a regulator of lipid synthesis, is involved in carcinogenesis-associated metabolic pathways. DNA methylation is an important mechanism for silencing ACADS in various malignancies. However, the specific role of ACADS in hepatocellular carcinoma (HCC) pathogenesis remains poorly understood.

View Article and Find Full Text PDF

This is a randomized, double-blind, placebo-controlled phase 3 clinical trial (ClinicalTrials.gov, NCT04878016) conducted in 54 hospitals in China. Adults who were histologically diagnosed and never treated for extensive-stage small cell lung cancer (ES-SCLC) were enrolled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!