Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study addresses the participation of radiation-induced free radicals, mainly nitric oxide (NO), in modulating the apoptotic response in an in vitro model of neural cortical precursor cells exposed to gamma-radiation. Cortical cells obtained from rats at 17 gestational day (GD) were irradiated with a dose of 2 Gy. The percentage of apoptotic cells was significantly increased 4h post-irradiation (pi). NO content showed a significant increase after 30 min pi and the rate of generation reached a maximum 1h pi. Luminol-dependent chemiluminescence (CL) was significantly higher in cells after 2h pi as compared to control cells and this profile was maintained up to 4 h pi. Supplementation with L-NAME significantly increased light emission. Administration of superoxide dismutase (SOD) following L-NAME addition prevented the observed changes due to L-NAME administration. The caspase inhibitor zDEVD-fmk significantly reduced the radical generation. Moreover, the cellular decrease in NO content occurred coincidentally with the rise in oxygen radical generation and the activation of caspase-3. In vitro irradiation of neural precursor cells allowed us to suggest that an early radiation-induced generation of NO could exert a neuroprotective role. However, despite this NO initial protective effect and its role modulating the response against gamma-radiation, NO generation was not able of fully preventing radiation-induced apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuro.2005.11.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!