Antigen mining with iterative genome screens identifies novel diagnostics for the Mycobacterium tuberculosis complex.

Clin Vaccine Immunol

TB Research Group, Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom.

Published: January 2006

The definition of antigens for the diagnosis of human and bovine tuberculosis is a research priority. If diagnosis is to be used alongside Mycobacterium bovis BCG-based vaccination regimens, it will be necessary to have reagents that allow the discrimination of infected and vaccinated animals. A list of 42 potential M. bovis-specific antigens was prepared by comparative analysis of the genomes of M. bovis, M. avium subsp. avium, M. avium subsp. paratuberculosis, and Streptomyces coelicolor. Potential antigens were tested by applying them in a high-throughput peptide-based screening system to M. bovis-infected and BCG-vaccinated cattle and to cattle without prior exposure to M. bovis. A response hierarchy of antigens was established by comparing responses in infected animals. Three antigens (Mb2555, Mb2890, and Mb3895) were selected for further study, as they were strongly recognized in experimentally infected animals but with low or no frequency in BCG-vaccinated and naïve cows. Interestingly, all three antigens were recognized in animals vaccinated against Johne's disease, suggesting the presences of epitopes cross-reacting with M. avium subsp. paratuberculosis antigens. Eight peptides from the three antigens studied in detail were identified as immunodominant and were characterized in terms of major histocompatibility complex class II restriction element usage and shown to be restricted through both DR and DQ molecules. Reasons for antigenic cross-reactivity with M. avium subsp. paratuberculosis and refinement of the in silico strategy to predict such cross-reactivity from the primary protein sequence will be discussed. Evaluation of the peptides identified from the three dominant antigens by use of larger field studies is now a priority.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1356633PMC
http://dx.doi.org/10.1128/CVI.13.1.90-97.2006DOI Listing

Publication Analysis

Top Keywords

avium subsp
16
subsp paratuberculosis
12
three antigens
12
antigens
9
infected animals
8
avium
5
antigen mining
4
mining iterative
4
iterative genome
4
genome screens
4

Similar Publications

Unlabelled: The complex (MAC) is a common causative agent causing nontuberculous mycobacterial (NTM) pulmonary disease worldwide. Whole-genome sequencing was performed on a total of 203 retrospective MAC isolates from respiratory specimens. Phylogenomic analysis identified eight subspecies and species.

View Article and Find Full Text PDF

Bayesian estimation of diagnostic accuracy of fecal smears, fecal PCR and serum ELISA for detecting Mycobacterium avium subsp. paratuberculosis infections in four domestic ruminant species in Saudi Arabia.

Vet Microbiol

January 2025

Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Research Chair in Biosecurity of Dairy Production, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.

Paratuberculosis, a chronic wasting disease affecting domestic and wild ruminants worldwide, is caused by Mycobacterium avium subsp. paratuberculosis (MAP). Various diagnostic tests exist for detecting MAP infection; however, none of them possess perfect accuracy to be qualified as a reference standard test, particularly due to their notably low sensitivity.

View Article and Find Full Text PDF

Paratuberculosis (PTB), primarily caused by subsp. (MAP), is a chronic infection that affects ruminants and is difficult to prevent, diagnose, and treat. Investigating how MAP infections affect the gut microbiota in sheep can aid in the prevention and treatment of ovine PTB.

View Article and Find Full Text PDF

The Mycobacterium avium complex (MAC) is a group of closely related nontuberculous mycobacteria that can cause various diseases in humans. In this study, genome sequencing, comprehensive genomic analysis, and antimicrobial susceptibility testing of 66 MAC clinical isolates from King Chulalongkorn Memorial Hospital, Bangkok, Thailand were carried out. Whole-genome average nucleotide identity (ANI) revealed the MAC species distribution, comprising 54 (81.

View Article and Find Full Text PDF

Paratuberculosis (Johne's disease), caused by Mycobacterium avium subsp. paratuberculosis (MAP), is a common, economically-important and potentially zoonotic contagious disease of cattle, with worldwide distribution. Disease management relies on identification of animals which are at high-risk of being infected or infectious.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!