Hepatitis C virus non-structural 5A protein can enhance full-length core protein-induced nuclear factor-kappaB activation.

World J Gastroenterol

State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan 430072, Hubei Province, China.

Published: November 2005

Aim: To study the effects of hepatitis C virus (HCV) core and non-structural 5A (NS5A) proteins on nuclear factor-kappaB (NF-kappaB) activity for understanding their biological function on chronic hepatitis caused by HCV infection.

Methods: Luciferase assay was used to measure the activity of NF-kappaB in three different cell lines cotransfected with a series of deletion mutants of core protein alone or together with NS5A protein using pNF-kappaB-Luc as a reporter plasmid. Western blot and indirect immunofluorescence assays were used to confirm the expression of proteins and to detect their subcellular localization, respectively. Furthermore, Western blot was also used to detect the expression levels of NF-kappaB/p65, NF-kappaB/p50, and inhibitor kappaB-a (IkappaB-a).

Results: The wild-type core protein (C191) and its mutant segments (C173 and C158) could activate NF-kappaB in Huh7 cells only and activation caused by (C191) could be enhanced by NS5A protein. Moreover, the full-length core protein and its different deletion mutants alone or together with NS5A protein did not enhance the expression level of NF-kappaB. The NF-kappaB activity was augmented due to the dissociation of NF-kappaB-IkappaB complex and the degradation of IkappaB-a.

Conclusion: NF-kappaB is the key transcription factor that can activate many genes that are involved in the cellular immune response and inflammation. Coexpression of the full-length core protein along with NS5A can enhance the NF-kappaB activation, and this activation may play a significant role in chronic liver diseases including hepatocellular carcinoma associated with HCV infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355782PMC
http://dx.doi.org/10.3748/wjg.v11.i41.6433DOI Listing

Publication Analysis

Top Keywords

core protein
16
full-length core
12
ns5a protein
12
hepatitis virus
8
protein
8
protein enhance
8
nuclear factor-kappab
8
nf-kappab activity
8
deletion mutants
8
protein ns5a
8

Similar Publications

NFKB1 as a key player in Tumor biology: from mechanisms to therapeutic implications.

Cell Biol Toxicol

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.

NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.

View Article and Find Full Text PDF

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing.

Mol Pharm

January 2025

Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.

Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing ().

View Article and Find Full Text PDF

E3 ligase substrate adaptor SPOP fine-tunes the UPR of pancreatic β cells.

Genes Dev

December 2024

Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA;

The Cullin-3 E3 ligase adaptor protein SPOP targets proteins for ubiquitination and proteasomal degradation. We previously established the β-cell transcription factor (TF) and human diabetes gene PDX1 as an SPOP substrate, suggesting a functional role for SPOP in the β cell. Here, we generated a β-cell-specific deletion mouse strain ( ) and found that is necessary to prevent aberrant basal insulin secretion and for maintaining glucose-stimulated insulin secretion through impacts on glycolysis and glucose-stimulated calcium flux.

View Article and Find Full Text PDF

Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!