Berberine prolongs the duration of cardiac action potentials without affecting resting membrane potential or action potential amplitude. Controversy exists regarding whether berberine exerts this action by preferential block of different components of the delayed rectifying potassium current, I(Kr) and I(Ks). Here we have studied the effects of berberine on hERG (I(Kr)) and KCNQ1/KCNE1 (I(Ks)) channels expressed in HEK-293 cells and Xenopus oocytes. In HEK-293 cells, the IC50 for berberine was 3.1 +/- 0.5 microM on hERG compared with 11 +/- 4% decreases on KCNQ1/KCNE1 channels by 100 microM berberine. Likewise in oocytes, hERG channels were more sensitive to block by berberine (IC50 = 80 +/- 5 microM) compared with KCNQ1/KCNE1 channels (approximately 20% block at 300 microM). hERG block was markedly increased by membrane depolarization. Mutation to Ala of Y652 or F656 located on the S6 domain, or V625 located at the base of the pore helix of hERG decreased sensitivity to block by berberine. An inactivation-deficient mutant hERG channel (G628C/S631C) was also blocked by berberine. Together these findings indicate that berberine preferentially blocks the open state of hERG channels by interacting with specific residues that were previously reported to be important for binding of more potent antagonists.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.fjc.0000191564.52242.00DOI Listing

Publication Analysis

Top Keywords

herg channels
12
berberine
10
channels berberine
8
hek-293 cells
8
+/- microm
8
microm herg
8
kcnq1/kcne1 channels
8
block berberine
8
channels
7
herg
7

Similar Publications

Pulmonary fibrosis (PF) is a progressive, fatal lung disease lacking effective treatments. Autotaxin (ATX) plays a crucial role in exacerbating inflammation and fibrosis, making it a promising target for fibrosis therapies. Herein, starting from PAT-409 (Cudetaxestat), a series of novel ATX inhibitors bearing 1-indole-3-carboxamide, 4,5,6,7-tetrahydro-7-pyrazolo[3,4-]pyridin-7-one, or 4,5,6,7-tetrahydro-1-pyrazolo[4,3-]pyridine cores were designed based on the structure of ATX hydrophobic tunnel.

View Article and Find Full Text PDF

AttenhERG: a reliable and interpretable graph neural network framework for predicting hERG channel blockers.

J Cheminform

December 2024

Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China.

Cardiotoxicity, particularly drug-induced arrhythmias, poses a significant challenge in drug development, highlighting the importance of early-stage prediction of human ether-a-go-go-related gene (hERG) toxicity. hERG encodes the pore-forming subunit of the cardiac potassium channel. Traditional methods are both costly and time-intensive, necessitating the development of computational approaches.

View Article and Find Full Text PDF

Background And Objective: In silico human models are being used more and more to predict the potential proarrhythmic risk of compounds. It has been shown that incorporation of the dynamics of drug-hERG channel interactions can have an important impact on the action potential duration (APD) at normal heart rates. Our aim is to investigate the relevance of drug dynamics on other important biomarkers of proarrhythmic risk.

View Article and Find Full Text PDF

Nitazene opioids and the heart: Identification of a cardiac ion channel target for illicit nitazene opioids.

J Mol Cell Cardiol Plus

December 2024

School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK.

The growing use of nitazene synthetic opioids heralds a new phase of the opioid crisis. However, limited information exists on the toxic effects of these drugs, aside from a propensity for respiratory depression. With restricted research availability of nitazenes, we used machine-learning-based tools to evaluate five nitazene compounds' interaction potential with the hERG potassium channel, a key drug antitarget in the heart.

View Article and Find Full Text PDF

Multidrug-resistant tuberculosis (MDR-TB) patients are treated with a standardised, short World Health Organization (WHO) regimen which includes clofazimine (CFZ) and bedaquiline (BDQ) antibiotics. These two antibiotics lead to the development of QT prolongation in patients, inhibiting potassium (K) uptake by targeting the voltage-gated K (Kv)11.1 (hERG) channel of the cardiomyocytes (CMs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!