Sequence analysis of H chain cDNA derived from the spleen of an individual catfish has shown that somatic mutation occurs within both the VH- and JH-encoded regions. Somatic mutation preferentially targets G and C nucleotides with approximately balanced frequencies, resulting in the predominant accumulation of G-to-A and C-to-T substitutions that parallel the activation-induced cytidine deaminase nucleotide exchanges known in mammals. The overall mutation rate of A nucleotides is not significantly different from that expected by sequence-insensitive mutations, and a significant bias exists against mutations occurring in T. Targeting of mutations is dependent upon the sequence of neighboring nucleotides, allowing statistically significant hotspot motifs to be identified. Dinucleotide, trinucleotide, and RGYW analyses showed that mutational targets in catfish are restricted when compared with the spectrum of targets known in mammals. The preferential targets for G and C mutation are the central GC positions in both AGCT and AGCA. The WA motif, recognized as a mammalian hotspot for A mutations, was not a significant target for catfish mutations. The only significant target for A mutations was the terminal position in AGCA. Lastly, comparisons of mutations located in framework region and CDR codons coupled with multinomial distribution studies found no substantial evidence in either independent or clonally related VDJ rearrangements to indicate that somatic mutation coevolved with mechanisms that select B cells based upon nonsynonymous mutations within CDR-encoded regions. These results suggest that the principal role of somatic mutation early in phylogeny was to diversify the repertoire by targeting hotspot motifs preferentially located within CDR-encoded regions.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.176.3.1655DOI Listing

Publication Analysis

Top Keywords

somatic mutation
20
mutations
8
hotspot motifs
8
mutations target
8
cdr-encoded regions
8
mutation
7
somatic
5
nucleotide targets
4
targets somatic
4
mutation role
4

Similar Publications

Several decades have passed since the description of the first patient with primary aldosteronism (PA). PA was initially classified in two main forms: aldosterone-producing adenoma (APA) and idiopathic hyperaldosteronism (IHA). However, the pathogenesis of PA has now been shown to be far more complex.

View Article and Find Full Text PDF

Introduction: Iron overload (IOL) accumulates in myelodysplastic syndromes (MDS) from expanded erythropoiesis and transfusions. Somatic mutations (SM) are frequent in MDS and stratify patient risk. MDS treatments reversing or limiting transfusion dependence are limited.

View Article and Find Full Text PDF

In the presence of stressful environments, the SKN-1 cytoprotective transcription factor is activated to induce the expression of gene targets that can restore homeostasis. However, chronic activation of SKN-1 results in diminished health and a reduction of lifespan. Here we demonstrate the necessity of modulating SKN-1 activity to maintain the longevity-promoting effects associated with genetic mutations that impair daf-2/insulin receptor signaling, the eat-2 model of dietary restriction, and glp-1-dependent loss of germ cell proliferation.

View Article and Find Full Text PDF

Somatic activating mutations in KRAS can cause complex lymphatic anomalies (CLAs). However, the specific processes that drive KRAS-mediated CLAs have yet to be fully elucidated. Here, we used single-cell RNA sequencing to construct an atlas of normal and KrasG12D-malformed lymphatic vessels.

View Article and Find Full Text PDF

Aplastic anemia (AA) is a life-threatening bone marrow failure syndrome. The advent of next-generation sequencing (NGS) has shed light on the link between somatic mutations (SM) and the efficacy of immunosuppressive therapy (IST) in AA patients. However, the relationship between SM and hematopoietic stem cell transplantation (HSCT) has not been extensively explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!