Central excitability does not limit postfatigue voluntary activation of quadriceps femoris.

J Appl Physiol (1985)

Department of Biology, Rm. 346, Bethune College, York University, 4700 Keele St., Toronto, ON, Canada M3J 1P3.

Published: June 2006

After fatigue, motor evoked potentials (MEP) elicited by transcranial magnetic stimulation and cervicomedullary evoked potentials elicited by stimulation of the corticospinal tract are depressed. These reductions in corticomotor excitability and corticospinal transmission are accompanied by voluntary activation failure, but this may not reflect a causal relationship. Our purpose was to determine whether a decline in central excitability contributes to central fatigue. We hypothesized that, if central excitability limits voluntary activation, then a caffeine-induced increase in central excitability should offset voluntary activation failure. In this repeated-measures study, eight men each attended two sessions. Baseline measures of knee extension torque, maximal voluntary activation, peripheral transmission, contractile properties, and central excitability were made before administration of caffeine (6 mg/kg) or placebo. The amplitude of vastus lateralis MEPs elicited during minimal muscle activation provided a measure of central excitability. After a 1-h rest, baseline measures were repeated before, during, and after a fatigue protocol that ended when maximal voluntary torque declined by 35% (Tlim). Increased prefatigue MEP amplitude (P=0.055) and cortically evoked twitch (P<0.05) in the caffeine trial indicate that the drug increased central excitability. In the caffeine trial, increased MEP amplitude was correlated with time to task failure (r=0.74, P<0.05). Caffeine potentiated the MEP early in the fatigue protocol (P<0.05) and offset the 40% decline in placebo MEP (P<0.05) at Tlim. However, this was not associated with enhanced maximal voluntary activation during fatigue or recovery, demonstrating that voluntary activation is not limited by central excitability.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.01347.2005DOI Listing

Publication Analysis

Top Keywords

central excitability
24
voluntary activation
20
evoked potentials
8
activation failure
8
baseline measures
8
maximal voluntary
8
central
7
voluntary
6
activation
6
excitability
6

Similar Publications

Impact of muscle fatigue on anticipatory postural adjustments during gait initiation.

Front Physiol

January 2025

Human Physiology Section of the Department of Pathophysiology and Transplantation, Università Degli Studi, Milano, Italy.

Introduction: Prolonged or strenuous exercise leads to a temporary decrease in muscle function and performance, which interferes with activity of both prime movers and postural muscles. This effect of fatigue has been reported both for single segment movements and for locomotion. However, little is known regarding the effects of fatigue on anticipatory postural adjustments (APAs) during gait initiation, a task in which the control of focal movement should be strictly coupled to a feedforward control of posture.

View Article and Find Full Text PDF

Photo-enhanced UiO-66/Au Nanoparticles with High Phosphatase-Like Activity for Rapid Degradation and Detection of Paraoxon.

Small

January 2025

State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.

The severe environmental and human health hazards posed by organophosphorus compounds underscore the pressing need for advancements in their degradation and detection. However, practical implementation is impeded by prolonged degradation durations and limited efficiency. Herein, an effective interfacial modification approach is proposed involving the integration of photoactive Au nanoparticles (NPs) onto metal-organic frameworks, resulting in the synthesis of UiO-66/Au NPs exhibiting enhanced hydrolysis activity under light excitation.

View Article and Find Full Text PDF

Sulfur-containing small molecules, mainly including cysteine (Cys), homocysteine (Hcy), glutathione (GSH), and hydrogen sulfide (HS), are crucial biomarkers, and their levels in different body locations (living cells, tissues, blood, urine, saliva, ) are inconsistent and constantly changing. Therefore, it is highly meaningful and challenging to synchronously and accurately detect them in complex multi-component samples without mutual interference. In this work, we propose a steric hindrance-regulated probe, NBD-2FDCI, with single excitation dual emissions to achieve self-adaptive detection of four analytes.

View Article and Find Full Text PDF

Fentanyl is a potent synthetic opioid widely used perioperatively and illicitly as a drug of abuse . It is well established that fentanyl acts as a μ-opioid receptor agonist, signaling through Gα intracellular pathways to inhibit electrical excitability, resulting in analgesia and respiratory depression . However, fentanyl uniquely also triggers muscle rigidity, including respiratory muscles, hindering the ability to execute central respiratory commands or to receive external resuscitation.

View Article and Find Full Text PDF

Hollow TiO@TpPa S-Scheme Photocatalyst for Efficient HO Production Through O in Deionized Water Using Phototautomerization.

Small

January 2025

Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, Hubei, 430078, P. R. China.

Hydrogen peroxide (HO) production through photocatalytic O reduction reaction (ORR) is a mild and cost-efficient alternative to the anthraquinone oxidation strategy. Of note, singlet state oxygen (O) plays a crucial role in ORR. Herein, a hollow TiO@TpPa (TOTP) S-scheme heterojunction by the Schiff base reactions involving 1,3,5-triformylphloroglucinol (Tp) and paraphenylenediamine (Pa) for efficient photocatalytic HO production in deionized water has been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!