Heat shock proteins such as gp96 have the ability to chaperone peptides and activate antigen-presenting cells. In this study, we tested whether adenovirus-mediated overexpression of secreted or membrane-associated forms of gp96 in tumor cells would stimulate an antitumor immune response. Studies were carried out in C57Bl/6 mice bearing aggressively growing s.c. tumors derived from syngeneic TC-1 cells, a cell line that expresses HPV16 E6 and E7 proteins. We found that secreted gp96 can induce protective and therapeutic antitumor immune responses. Our data also indicate that the antitumor effect of sgp96 expression seems to be limited by the induction of suppressive regulatory T cells (Treg). TC-1 tumor transplantation increased the number of splenic and tumor-infiltrating Tregs. Importantly, treatment of mice with low-dose cyclophosphamide decreased the number of Tregs and enhanced the immunostimulatory effect of sgp96 expression. We also tested whether an oncolytic vector (Ad.IR-E1A/TRAIL), that is able to induce tumor cell apoptosis and, potentially, release cryptic tumor epitopes in immunogenic form, could stimulate antitumor immune responses. Although tumor cells infected ex vivo with Ad.IR-E1A/TRAIL had no antitumor effect when used as a vaccine alone, the additional treatment with low-dose cyclophosphamide resulted in the elimination of pre-established tumors. This study gives a rationale for testing approaches that suppress Tregs in combination with oncolytic or immunostimulatory vectors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360184PMC
http://dx.doi.org/10.1158/0008-5472.CAN-05-2388DOI Listing

Publication Analysis

Top Keywords

antitumor immune
16
low-dose cyclophosphamide
12
immune responses
12
heat shock
8
tumor cells
8
stimulate antitumor
8
sgp96 expression
8
antitumor
6
cells
5
tumor
5

Similar Publications

Objectives: SOX10 is crucially implicated in various cancer, yet the regulatory role in pancreatic cancer (PC) remains enigmatic. Underlying molecular mechanisms of SOX10 in PC were explored in our study.

Methods: Relationships between SOX10 and immune landscape were estimated using bioinformatic approaches.

View Article and Find Full Text PDF

New treatment approaches are warranted for patients with advanced melanoma refractory to immune checkpoint blockade (ICB) or BRAF-targeted therapy. We designed BNT221, a personalized, neoantigen-specific autologous T cell product derived from peripheral blood, and tested this in a 3 + 3 dose-finding study with two dose levels (DLs) in patients with locally advanced or metastatic melanoma, disease progression after ICB, measurable disease (Response Evaluation Criteria in Solid Tumors version 1.1) and, where appropriate, BRAF-targeted therapy.

View Article and Find Full Text PDF

Background: This study aimed to investigate the prognostic impact of lymph node metastasis (LNM) on patients with colorectal cancer liver metastasis (CRLM) and elucidate the underlying immune mechanisms using multiomics profiling.

Methods: We enrolled patients with CRLM from the US Surveillance, Epidemiology, and End Results (SEER) cohort and a multicenter Chinese cohort, integrating bulk RNA sequencing, single-cell RNA sequencing and proteomics data. The cancer-specific survival (CSS) and immune profiles of the tumor-draining lymph nodes (TDLNs), primary tumors and liver metastasis were compared between patients with and without LNM.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a highly prevalent malignancy with limited treatment efficacy despite advances in immune checkpoint blockade (ICB) therapy. The inherently weak immune responses in HCC necessitate novel strategies to improve anti-tumor immunity and synergize with ICB therapy. Kinesin family member 20A (KIF20A) is a tumor-associated antigen (TAA) overexpressed in HCC, and it could be a promising target for vaccine development.

View Article and Find Full Text PDF

Conventional chemotherapy- and radiotherapy-induced cancer senescence, which is characterized by poor proliferation, drug resistance, and senescence-associated secretory phenotype, has gained attention as contributing to cancer relapse and the development of an immunosuppressive tumor microenvironment. However, the association between cancer senescence and anti-tumor immunity is not fully understood. Here, we demonstrate that senescent cancer cells increase the level of PD-L1 by promoting its transcription and glycosylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!