Although recent studies have shown that enteric neurons control intestinal barrier function, the role of enteric glial cells (EGCs) in this control remains unknown. Therefore, our goal was to characterize the role of EGCs in the control of intestinal epithelial cell proliferation using an in vivo transgenic and an in vitro coculture model. Assessment of intestinal epithelial cell proliferation after ablation of EGCs in transgenic mice demonstrated a significant increase in crypt cell hyperplasia. Furthermore, mucosal glial network (assessed by immunohistochemical detection of S-100beta) is altered in colon adenocarcinoma compared with control tissue. In an in vitro coculture model of subconfluent Caco-2 cells seeded onto Transwell filters with EGCs, Caco-2 cell density and [3H]thymidine incorporation were significantly lower than in control (Caco-2 cultured alone). Flow cytometry analysis showed that EGCs had no effect on Caco-2 cell viability. EGCs induced a significant increase in Caco-2 cell surface area without any sign of cellular hypertrophy. These effects by EGCs were also seen in various transformed or nontransformed intestinal epithelial cell lines. Furthermore, TGF-beta1 mRNA was expressed, and TGF-beta1 was secreted by EGCs. Exogenously added TGF-beta1 reproduced partly the EGC-mediated effects on cell density and surface area. In addition, EGC effects on Caco-2 cell density were significantly reduced by a neutralizing TGF-beta antibody. In conclusion, EGCs have profound antiproliferative effects on intestinal epithelial cells. Functional alterations in EGCs may therefore modify intestinal barrier functions and be involved in pathologies such as cancer or inflammatory bowel diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpgi.00276.2005DOI Listing

Publication Analysis

Top Keywords

intestinal epithelial
20
epithelial cell
16
caco-2 cell
16
cell proliferation
12
cell density
12
cell
10
egcs
10
control intestinal
8
intestinal barrier
8
egcs control
8

Similar Publications

Background: Intestinal larva invasion is a crucial step of Trichinella spiralis infection. Intestinal infective larvae (IIL) and their excretory/secretory proteins (ESP) interact with gut epithelium, which often results in gut epithelium barrier injuries. Previous studies showed when T.

View Article and Find Full Text PDF

Motif distribution and DNA methylation underlie distinct Cdx2 binding during development and homeostasis.

Nat Commun

January 2025

Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Transcription factors guide tissue development by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of transcription factors. However, how transcription factors navigate chromatin features to selectively bind a small subset of all the possible genomic target loci remains poorly understood.

View Article and Find Full Text PDF

Intestinal immune homeostasis relies on intestinal epithelial cells (IECs), which provide an efficient barrier, and warrant a state of tolerance between the microbiome and the mucosal immune system. Thus, proper epithelial microbial sensing and handling of microbes is key to preventing excessive immunity, such as seen in patients with inflammatory bowel disease (IBD). To date, the molecular underpinnings of these processes remain incompletely understood.

View Article and Find Full Text PDF

Background: C-type lectin (CTL) plays an important act in parasite adhesion, host's cell invasion and immune escape. Our previous studies showed that recombinant Trichinella spiralis C-type lectin (rTsCTL) mediated larval invasion of enteral mucosal epithelium. The aim of this study was to investigate protective immunity produced by vaccination with rTsCTL and its effect on gut epithelial barrier function in a mouse model.

View Article and Find Full Text PDF

Colorectal carcinoma (CRC) progression is associated with an increase in PROX1+ tumor cells, which exhibit features of CRC stem cells and contribute to metastasis. Here, we aimed to provide a better understanding to the function of PROX1+ cells in CRC, investigating their progeny and their role in therapy resistance. PROX1+ cells in intestinal adenomas of ApcMin/+ mice expressed intestinal epithelial and CRC stem cell markers, and cells with high PROX1 expression could both self-renew tumor stem/progenitor cells and contribute to differentiated tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!